粘性土的电渗透与力学耦合固结分析

IF 1.3 Q3 ENGINEERING, GEOLOGICAL
S. Gargano, S. Lirer, A. Flora
{"title":"粘性土的电渗透与力学耦合固结分析","authors":"S. Gargano, S. Lirer, A. Flora","doi":"10.1680/JGRIM.18.00010","DOIUrl":null,"url":null,"abstract":"Electrokinetic (EK) treatment is a possible attractive way to speed up the consolidation of fine-grained dredged sediments. The effectiveness of this method depends on the complex physical–chemical interaction between soil particles, interstitial fluid and pollutants. This paper presents the experimental laboratory results obtained by inducing mechanical and EK consolidation in a fine-grained dredged material. Then, a finite-difference numerical code implemented by the authors able to solve the large and small strain consolidation equations (Lassec1), including the electro-osmotic flow, is described along with the theoretical simplifications adopted and the calibration procedure required. The experimental results have been numerically simulated, showing the ability of Lassec1 to reproduce the coupled mechanical and electrical consolidation processes, highlighting that under very low stress levels it is necessary to take into account the highly non-linear soil behaviour, and thus the large strain theory is...","PeriodicalId":51705,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Ground Improvement","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Analysis of the coupled electro-osmotic and mechanical consolidation in clayey soils\",\"authors\":\"S. Gargano, S. Lirer, A. Flora\",\"doi\":\"10.1680/JGRIM.18.00010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrokinetic (EK) treatment is a possible attractive way to speed up the consolidation of fine-grained dredged sediments. The effectiveness of this method depends on the complex physical–chemical interaction between soil particles, interstitial fluid and pollutants. This paper presents the experimental laboratory results obtained by inducing mechanical and EK consolidation in a fine-grained dredged material. Then, a finite-difference numerical code implemented by the authors able to solve the large and small strain consolidation equations (Lassec1), including the electro-osmotic flow, is described along with the theoretical simplifications adopted and the calibration procedure required. The experimental results have been numerically simulated, showing the ability of Lassec1 to reproduce the coupled mechanical and electrical consolidation processes, highlighting that under very low stress levels it is necessary to take into account the highly non-linear soil behaviour, and thus the large strain theory is...\",\"PeriodicalId\":51705,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers-Ground Improvement\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers-Ground Improvement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/JGRIM.18.00010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Ground Improvement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/JGRIM.18.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 11

摘要

电动(EK)处理可能是加速细粒疏浚沉积物固结的一种有吸引力的方法。该方法的有效性取决于土壤颗粒、间隙流体和污染物之间复杂的物理化学相互作用。本文介绍了在细粒疏浚材料中诱导力学固结和EK固结的实验结果。然后,作者实现了一个有限差分数值程序,能够求解大应变和小应变固结方程(Lassec1),包括电渗透流,以及所采用的理论简化和所需的校准程序。实验结果进行了数值模拟,显示Lassec1能够重现耦合的机械和电气固结过程,强调在非常低的应力水平下,有必要考虑高度非线性的土壤行为,因此大应变理论是…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the coupled electro-osmotic and mechanical consolidation in clayey soils
Electrokinetic (EK) treatment is a possible attractive way to speed up the consolidation of fine-grained dredged sediments. The effectiveness of this method depends on the complex physical–chemical interaction between soil particles, interstitial fluid and pollutants. This paper presents the experimental laboratory results obtained by inducing mechanical and EK consolidation in a fine-grained dredged material. Then, a finite-difference numerical code implemented by the authors able to solve the large and small strain consolidation equations (Lassec1), including the electro-osmotic flow, is described along with the theoretical simplifications adopted and the calibration procedure required. The experimental results have been numerically simulated, showing the ability of Lassec1 to reproduce the coupled mechanical and electrical consolidation processes, highlighting that under very low stress levels it is necessary to take into account the highly non-linear soil behaviour, and thus the large strain theory is...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
8.30%
发文量
54
期刊介绍: Ground Improvement provides a fast-track vehicle for the dissemination of news in technological developments, feasibility studies and innovative engineering applications for all aspects of ground improvement, ground reinforcement and grouting. The journal publishes high-quality, practical papers relevant to engineers, specialist contractors and academics involved in the development, design, construction, monitoring and quality control aspects of ground improvement. It covers a wide range of civil and environmental engineering applications, including analytical advances, performance evaluations, pilot and model studies, instrumented case-histories and innovative applications of existing technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信