基于内燃机的电厂元件可靠性的最小残差熵法确定

IF 1.1 Q4 ENGINEERING, MECHANICAL
S. Zaichenko, K. Pochka, Yurii O. Romasevych, V. Shalenko, R. Kulish, M. Balaka
{"title":"基于内燃机的电厂元件可靠性的最小残差熵法确定","authors":"S. Zaichenko, K. Pochka, Yurii O. Romasevych, V. Shalenko, R. Kulish, M. Balaka","doi":"10.15407/pmach2023.01.039","DOIUrl":null,"url":null,"abstract":"The selection technique of diagnostic parameters for the creation of fault detection system of autonomous electric power sources based on gasoline and diesel engines is given in the paper. An analysis of the design features for autonomous electric power sources based on internal combustion engines, which are the most common on the Ukrainian market, was carried out. Thanks to this, a logical model of the research object, which establishes the relation between the main structural elements of the system and determines the possible states of the system, was developed. The effect of fault state initiation for each element on the other system elements was analyzed. An informative criterion – Shannon information entropy is proposed to determine the finite number of diagnostic parameters among the infinite number of possible combinations for physical parameters that characterize the system. The equal-probable cases of exit from operational state of each system elements are considered. The residual entropies of the system at the fault state for one of the autonomous power sources assembly are determined, having applied the concept of Shannon information entropy. The residual entropy value is the informative criterion. The application of this criterion allowed to determine the system elements that most effectively reduce the system uncertainty degree. Based on the residual entropy values, the system assemblies, the state of which should be primarily monitored by diagnostic system, are selected. The diagnostic parameters are determined for such elements, and the ways to obtain them are given","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of Elements Reliability for Power Plants Based on Internal Combustion Engines by Lowest Residual Entropy Method\",\"authors\":\"S. Zaichenko, K. Pochka, Yurii O. Romasevych, V. Shalenko, R. Kulish, M. Balaka\",\"doi\":\"10.15407/pmach2023.01.039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The selection technique of diagnostic parameters for the creation of fault detection system of autonomous electric power sources based on gasoline and diesel engines is given in the paper. An analysis of the design features for autonomous electric power sources based on internal combustion engines, which are the most common on the Ukrainian market, was carried out. Thanks to this, a logical model of the research object, which establishes the relation between the main structural elements of the system and determines the possible states of the system, was developed. The effect of fault state initiation for each element on the other system elements was analyzed. An informative criterion – Shannon information entropy is proposed to determine the finite number of diagnostic parameters among the infinite number of possible combinations for physical parameters that characterize the system. The equal-probable cases of exit from operational state of each system elements are considered. The residual entropies of the system at the fault state for one of the autonomous power sources assembly are determined, having applied the concept of Shannon information entropy. The residual entropy value is the informative criterion. The application of this criterion allowed to determine the system elements that most effectively reduce the system uncertainty degree. Based on the residual entropy values, the system assemblies, the state of which should be primarily monitored by diagnostic system, are selected. The diagnostic parameters are determined for such elements, and the ways to obtain them are given\",\"PeriodicalId\":16166,\"journal\":{\"name\":\"Journal of Mechanical Engineering and Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Engineering and Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/pmach2023.01.039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/pmach2023.01.039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了建立汽柴油发动机自主电源故障检测系统的诊断参数选择技术。分析了乌克兰市场上最常见的基于内燃机的自主电源的设计特点。因此,开发了研究对象的逻辑模型,该模型建立了系统主要结构元素之间的关系,并确定了系统的可能状态。分析了各部件故障状态启动对系统其他部件的影响。提出了一种信息准则——香农信息熵,用于从表征系统的物理参数的无限可能组合中确定有限数量的诊断参数。考虑了各系统要素从运行状态退出的等概率情况。应用香农信息熵的概念,确定了某自主电源组件故障状态下系统的残差熵。残差熵值是信息准则。该准则的应用允许确定最有效地降低系统不确定性程度的系统要素。根据残差熵值,选择诊断系统主要监测的系统组件。确定了该类元件的诊断参数,并给出了诊断参数的获取方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of Elements Reliability for Power Plants Based on Internal Combustion Engines by Lowest Residual Entropy Method
The selection technique of diagnostic parameters for the creation of fault detection system of autonomous electric power sources based on gasoline and diesel engines is given in the paper. An analysis of the design features for autonomous electric power sources based on internal combustion engines, which are the most common on the Ukrainian market, was carried out. Thanks to this, a logical model of the research object, which establishes the relation between the main structural elements of the system and determines the possible states of the system, was developed. The effect of fault state initiation for each element on the other system elements was analyzed. An informative criterion – Shannon information entropy is proposed to determine the finite number of diagnostic parameters among the infinite number of possible combinations for physical parameters that characterize the system. The equal-probable cases of exit from operational state of each system elements are considered. The residual entropies of the system at the fault state for one of the autonomous power sources assembly are determined, having applied the concept of Shannon information entropy. The residual entropy value is the informative criterion. The application of this criterion allowed to determine the system elements that most effectively reduce the system uncertainty degree. Based on the residual entropy values, the system assemblies, the state of which should be primarily monitored by diagnostic system, are selected. The diagnostic parameters are determined for such elements, and the ways to obtain them are given
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
42
审稿时长
20 weeks
期刊介绍: The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信