{"title":"正交山雀四边形","authors":"B. Mühlherr, R. Weiss","doi":"10.53733/105","DOIUrl":null,"url":null,"abstract":"\n\n\nWe show that every 4-plump razor-sharp normal Tits quadrangle X is uniquely determined by a non-degenerate quadratic space whose Witt index m is at least 2. If this Witt index is finite, then X is the Tits quadrangle arising from the corresponding building of type B_m or D_m by a standard construction.\n\n\n","PeriodicalId":30137,"journal":{"name":"New Zealand Journal of Mathematics","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Orthogonal Tits Quadrangles\",\"authors\":\"B. Mühlherr, R. Weiss\",\"doi\":\"10.53733/105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\n\\nWe show that every 4-plump razor-sharp normal Tits quadrangle X is uniquely determined by a non-degenerate quadratic space whose Witt index m is at least 2. If this Witt index is finite, then X is the Tits quadrangle arising from the corresponding building of type B_m or D_m by a standard construction.\\n\\n\\n\",\"PeriodicalId\":30137,\"journal\":{\"name\":\"New Zealand Journal of Mathematics\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Zealand Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53733/105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53733/105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
We show that every 4-plump razor-sharp normal Tits quadrangle X is uniquely determined by a non-degenerate quadratic space whose Witt index m is at least 2. If this Witt index is finite, then X is the Tits quadrangle arising from the corresponding building of type B_m or D_m by a standard construction.