{"title":"超前强子真空极化色散计算的现状","authors":"Zhiqing Zhang","doi":"10.1016/j.nuclphysbps.2014.09.032","DOIUrl":null,"url":null,"abstract":"<div><p>The leading-order hadronic contribution to the muon magnetic anomaly <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>≡</mo><mo>(</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>−</mo><mn>2</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span>, calculated using a dispersion integral of <span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> annihilation data and <em>τ</em> decay data, is briefly reviewed. This contribution has the largest uncertainty to the predicted value of <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow></msub></math></span>, which differs from the experimental value by ∼ 3.6 (2.4) standard deviations for the <span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> (<em>τ</em>) based analysis. New results since the last workshop and main open issues on the subject are discussed.</p></div>","PeriodicalId":93343,"journal":{"name":"Nuclear physics. B, Proceedings, supplements","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nuclphysbps.2014.09.032","citationCount":"2","resultStr":"{\"title\":\"Status of Leading-Order Hadronic Vacuum Polarization Dispersion Calculation\",\"authors\":\"Zhiqing Zhang\",\"doi\":\"10.1016/j.nuclphysbps.2014.09.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The leading-order hadronic contribution to the muon magnetic anomaly <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>≡</mo><mo>(</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>−</mo><mn>2</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span>, calculated using a dispersion integral of <span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> annihilation data and <em>τ</em> decay data, is briefly reviewed. This contribution has the largest uncertainty to the predicted value of <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow></msub></math></span>, which differs from the experimental value by ∼ 3.6 (2.4) standard deviations for the <span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> (<em>τ</em>) based analysis. New results since the last workshop and main open issues on the subject are discussed.</p></div>\",\"PeriodicalId\":93343,\"journal\":{\"name\":\"Nuclear physics. B, Proceedings, supplements\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.nuclphysbps.2014.09.032\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear physics. B, Proceedings, supplements\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920563214001637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear physics. B, Proceedings, supplements","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920563214001637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Status of Leading-Order Hadronic Vacuum Polarization Dispersion Calculation
The leading-order hadronic contribution to the muon magnetic anomaly , calculated using a dispersion integral of annihilation data and τ decay data, is briefly reviewed. This contribution has the largest uncertainty to the predicted value of , which differs from the experimental value by ∼ 3.6 (2.4) standard deviations for the (τ) based analysis. New results since the last workshop and main open issues on the subject are discussed.