无界区间上Ulam意义下时滞微分方程的稳定性

IF 2.2 Q1 MATHEMATICS, APPLIED
Süleyman Öğrekçi
{"title":"无界区间上Ulam意义下时滞微分方程的稳定性","authors":"Süleyman Öğrekçi","doi":"10.11121/IJOCTA.01.2019.00628","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the stability problem of delay differential equations in the sense of Hyers-Ulam-Rassias. Recently this problem has been solved for bounded intervals, our result extends and improve the literature by obtaining stability in unbounded intervals. An illustrative example is also given to compare these results and visualize the improvement.","PeriodicalId":37369,"journal":{"name":"International Journal of Optimization and Control: Theories and Applications","volume":"23 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Stability of delay differential equations in the sense of Ulam on unbounded intervals\",\"authors\":\"Süleyman Öğrekçi\",\"doi\":\"10.11121/IJOCTA.01.2019.00628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the stability problem of delay differential equations in the sense of Hyers-Ulam-Rassias. Recently this problem has been solved for bounded intervals, our result extends and improve the literature by obtaining stability in unbounded intervals. An illustrative example is also given to compare these results and visualize the improvement.\",\"PeriodicalId\":37369,\"journal\":{\"name\":\"International Journal of Optimization and Control: Theories and Applications\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2019-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optimization and Control: Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11121/IJOCTA.01.2019.00628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optimization and Control: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/IJOCTA.01.2019.00628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 13

摘要

本文研究了Hyers-Ulam-Rassias意义下的时滞微分方程的稳定性问题。最近这一问题在有界区间上得到了解决,我们的结果通过得到无界区间上的稳定性扩展和改进了文献。并给出了一个实例来比较这些结果和可视化的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of delay differential equations in the sense of Ulam on unbounded intervals
In this paper, we consider the stability problem of delay differential equations in the sense of Hyers-Ulam-Rassias. Recently this problem has been solved for bounded intervals, our result extends and improve the literature by obtaining stability in unbounded intervals. An illustrative example is also given to compare these results and visualize the improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
6.20%
发文量
13
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信