非厄米物理和主方程

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Federico Roccati, G. Palma, F. Ciccarello, F. Bagarello
{"title":"非厄米物理和主方程","authors":"Federico Roccati, G. Palma, F. Ciccarello, F. Bagarello","doi":"10.1142/S1230161222500044","DOIUrl":null,"url":null,"abstract":"A longstanding tool to characterize the evolution of open Markovian quantum systems is the GKSL (Gorini-Kossakowski-Sudarshan-Lindblad) master equation. However, in some cases, open quantum systems can be effectively described with non-Hermitian Hamiltonians, which have attracted great interest in the last twenty years due to a number of unconventional properties, such as the appearance of exceptional points. Here, we present a short review of these two different approaches aiming in particular to highlight their relation and illustrate different ways of connecting non-Hermitian Hamiltonian to a GKSL master equation for the full density matrix.","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"53 1","pages":"2250004:1-2250004:20"},"PeriodicalIF":1.3000,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Non-Hermitian Physics and Master Equations\",\"authors\":\"Federico Roccati, G. Palma, F. Ciccarello, F. Bagarello\",\"doi\":\"10.1142/S1230161222500044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A longstanding tool to characterize the evolution of open Markovian quantum systems is the GKSL (Gorini-Kossakowski-Sudarshan-Lindblad) master equation. However, in some cases, open quantum systems can be effectively described with non-Hermitian Hamiltonians, which have attracted great interest in the last twenty years due to a number of unconventional properties, such as the appearance of exceptional points. Here, we present a short review of these two different approaches aiming in particular to highlight their relation and illustrate different ways of connecting non-Hermitian Hamiltonian to a GKSL master equation for the full density matrix.\",\"PeriodicalId\":54681,\"journal\":{\"name\":\"Open Systems & Information Dynamics\",\"volume\":\"53 1\",\"pages\":\"2250004:1-2250004:20\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Systems & Information Dynamics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/S1230161222500044\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Systems & Information Dynamics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S1230161222500044","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 15

摘要

描述开放马尔可夫量子系统演化的一个长期工具是GKSL (Gorini-Kossakowski-Sudarshan-Lindblad)主方程。然而,在某些情况下,开放量子系统可以用非厄米哈密顿量有效地描述,由于一些非常规的性质,例如异常点的出现,在过去的二十年中引起了极大的兴趣。在这里,我们简要回顾了这两种不同的方法,特别强调了它们之间的关系,并说明了将非厄米哈密顿量与全密度矩阵的GKSL主方程连接起来的不同方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Hermitian Physics and Master Equations
A longstanding tool to characterize the evolution of open Markovian quantum systems is the GKSL (Gorini-Kossakowski-Sudarshan-Lindblad) master equation. However, in some cases, open quantum systems can be effectively described with non-Hermitian Hamiltonians, which have attracted great interest in the last twenty years due to a number of unconventional properties, such as the appearance of exceptional points. Here, we present a short review of these two different approaches aiming in particular to highlight their relation and illustrate different ways of connecting non-Hermitian Hamiltonian to a GKSL master equation for the full density matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Systems & Information Dynamics
Open Systems & Information Dynamics 工程技术-计算机:信息系统
CiteScore
1.40
自引率
12.50%
发文量
4
审稿时长
>12 weeks
期刊介绍: The aim of the Journal is to promote interdisciplinary research in mathematics, physics, engineering and life sciences centered around the issues of broadly understood information processing, storage and transmission, in both quantum and classical settings. Our special interest lies in the information-theoretic approach to phenomena dealing with dynamics and thermodynamics, control, communication, filtering, memory and cooperative behaviour, etc., in open complex systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信