慢性接触丙烯酰胺导致神经毒性风险的研究进展

N. Maddu, S. F. Begum
{"title":"慢性接触丙烯酰胺导致神经毒性风险的研究进展","authors":"N. Maddu, S. F. Begum","doi":"10.26689/ITPS.V1I1.416","DOIUrl":null,"url":null,"abstract":"The exposure and inhalation of acrylamide (ACR) are not safe to the human health leading to the potential neurotoxicity. ACR is widely used in biochemical techniques and highly occurs in processing foods such as potato chips prepared at high temperatures. ACR is formed from reducing sugars and asparagine through the Maillard reaction. It exerts various harmful and toxic effects such as neurotoxicity both in humans and animal studies. The extensive damage of synaptic proteins, the formation of ACR-DNA adducts, degeneration of motor neurons, neurofilament reduction, are the most common neurological symptoms. The main metabolite of ACR metabolism is glycidamide, and it causes harmful effects as same as ACR. The main purpose of this study is to analyze the neurotoxic effects of ACR on various regions of the brain and its different mechanistic pathways that are involved in ACR neurotoxicity. The consumption of ACR-containing foods and its exposure are reduced by the human, leading to the reduction of toxic effects associated with ACR.","PeriodicalId":13673,"journal":{"name":"INNOSC Theranostics and Pharmacological Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Review on Chronic Exposure of Acrylamide Causes a Neurotoxicity Risk\",\"authors\":\"N. Maddu, S. F. Begum\",\"doi\":\"10.26689/ITPS.V1I1.416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exposure and inhalation of acrylamide (ACR) are not safe to the human health leading to the potential neurotoxicity. ACR is widely used in biochemical techniques and highly occurs in processing foods such as potato chips prepared at high temperatures. ACR is formed from reducing sugars and asparagine through the Maillard reaction. It exerts various harmful and toxic effects such as neurotoxicity both in humans and animal studies. The extensive damage of synaptic proteins, the formation of ACR-DNA adducts, degeneration of motor neurons, neurofilament reduction, are the most common neurological symptoms. The main metabolite of ACR metabolism is glycidamide, and it causes harmful effects as same as ACR. The main purpose of this study is to analyze the neurotoxic effects of ACR on various regions of the brain and its different mechanistic pathways that are involved in ACR neurotoxicity. The consumption of ACR-containing foods and its exposure are reduced by the human, leading to the reduction of toxic effects associated with ACR.\",\"PeriodicalId\":13673,\"journal\":{\"name\":\"INNOSC Theranostics and Pharmacological Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INNOSC Theranostics and Pharmacological Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26689/ITPS.V1I1.416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INNOSC Theranostics and Pharmacological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26689/ITPS.V1I1.416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

丙烯酰胺(ACR)暴露和吸入对人体健康不安全,可导致潜在的神经毒性。ACR在生物化学技术中有广泛的应用,在诸如薯片等高温食品的加工中也经常发生。ACR是由还原糖和天冬酰胺通过美拉德反应形成的。在人类和动物研究中,它具有各种有害和毒性作用,如神经毒性。突触蛋白的广泛损伤、ACR-DNA加合物的形成、运动神经元变性、神经丝减少是最常见的神经症状。ACR代谢的主要代谢物是甘油酰胺,其危害性与ACR相同。本研究的主要目的是分析ACR对大脑各区域的神经毒性作用及其参与ACR神经毒性的不同机制途径。人类减少了对含ACR的食物的摄入和接触,从而减少了与ACR相关的毒性作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review on Chronic Exposure of Acrylamide Causes a Neurotoxicity Risk
The exposure and inhalation of acrylamide (ACR) are not safe to the human health leading to the potential neurotoxicity. ACR is widely used in biochemical techniques and highly occurs in processing foods such as potato chips prepared at high temperatures. ACR is formed from reducing sugars and asparagine through the Maillard reaction. It exerts various harmful and toxic effects such as neurotoxicity both in humans and animal studies. The extensive damage of synaptic proteins, the formation of ACR-DNA adducts, degeneration of motor neurons, neurofilament reduction, are the most common neurological symptoms. The main metabolite of ACR metabolism is glycidamide, and it causes harmful effects as same as ACR. The main purpose of this study is to analyze the neurotoxic effects of ACR on various regions of the brain and its different mechanistic pathways that are involved in ACR neurotoxicity. The consumption of ACR-containing foods and its exposure are reduced by the human, leading to the reduction of toxic effects associated with ACR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信