{"title":"通过物联网设备和传感器实现车辆之间通信的区块链框架","authors":"J. S. Raj","doi":"10.36548/JUCCT.2021.2.003","DOIUrl":null,"url":null,"abstract":"The advent of autonomous vehicles is indeed a potential field of research in today's situation. Connected Vehicles (CV) have received a lot of attention in the last decade, which has resulted in CV as a Service (CVaaS). With the advent of taxi services, there is a need for or demand for robust, seamless, and secure information transmission between the vehicles connected to a vehicular network. Thus, the concept of vehicular networking is transformed into novel concept of autonomous and connected vehicles. These autonomous vehicles will serve as a better experience by providing instant information from the vehicles via congestion reduction. The significant drawback faced by the invention of autonomous vehicles is the malicious floor of intruders, who tend to mislead the communication between the vehicles resulting in the compromised smart devices. To address these concerns, the best methodology that will protect and secure the control system of the autonomous vehicle in real time is blockchain. This research work proposes a blockchain framework in order to address the security challenges in autonomous vehicles. This research work enhances the security of smart vehicles thereby preventing intruders from accessing the vehicular network. To validate the suggested technique, money security criteria such as changing stored user ratings, probabilistic authentication scenarios, smart device compromise, and bogus user requests were employed. The observed findings have been documented and analysed, revealing an 82% success rate.","PeriodicalId":11002,"journal":{"name":"Day 1 Tue, March 23, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Blockchain Framework for Communication between Vehicle through IoT Devices and Sensors\",\"authors\":\"J. S. Raj\",\"doi\":\"10.36548/JUCCT.2021.2.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advent of autonomous vehicles is indeed a potential field of research in today's situation. Connected Vehicles (CV) have received a lot of attention in the last decade, which has resulted in CV as a Service (CVaaS). With the advent of taxi services, there is a need for or demand for robust, seamless, and secure information transmission between the vehicles connected to a vehicular network. Thus, the concept of vehicular networking is transformed into novel concept of autonomous and connected vehicles. These autonomous vehicles will serve as a better experience by providing instant information from the vehicles via congestion reduction. The significant drawback faced by the invention of autonomous vehicles is the malicious floor of intruders, who tend to mislead the communication between the vehicles resulting in the compromised smart devices. To address these concerns, the best methodology that will protect and secure the control system of the autonomous vehicle in real time is blockchain. This research work proposes a blockchain framework in order to address the security challenges in autonomous vehicles. This research work enhances the security of smart vehicles thereby preventing intruders from accessing the vehicular network. To validate the suggested technique, money security criteria such as changing stored user ratings, probabilistic authentication scenarios, smart device compromise, and bogus user requests were employed. The observed findings have been documented and analysed, revealing an 82% success rate.\",\"PeriodicalId\":11002,\"journal\":{\"name\":\"Day 1 Tue, March 23, 2021\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Tue, March 23, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36548/JUCCT.2021.2.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, March 23, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/JUCCT.2021.2.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Blockchain Framework for Communication between Vehicle through IoT Devices and Sensors
The advent of autonomous vehicles is indeed a potential field of research in today's situation. Connected Vehicles (CV) have received a lot of attention in the last decade, which has resulted in CV as a Service (CVaaS). With the advent of taxi services, there is a need for or demand for robust, seamless, and secure information transmission between the vehicles connected to a vehicular network. Thus, the concept of vehicular networking is transformed into novel concept of autonomous and connected vehicles. These autonomous vehicles will serve as a better experience by providing instant information from the vehicles via congestion reduction. The significant drawback faced by the invention of autonomous vehicles is the malicious floor of intruders, who tend to mislead the communication between the vehicles resulting in the compromised smart devices. To address these concerns, the best methodology that will protect and secure the control system of the autonomous vehicle in real time is blockchain. This research work proposes a blockchain framework in order to address the security challenges in autonomous vehicles. This research work enhances the security of smart vehicles thereby preventing intruders from accessing the vehicular network. To validate the suggested technique, money security criteria such as changing stored user ratings, probabilistic authentication scenarios, smart device compromise, and bogus user requests were employed. The observed findings have been documented and analysed, revealing an 82% success rate.