规则是II_2^0-微积分中很难

B. Intrigila, R. Statman
{"title":"规则是II_2^0-微积分中很难","authors":"B. Intrigila, R. Statman","doi":"10.1109/LICS.2004.1319614","DOIUrl":null,"url":null,"abstract":"We give a many-one reduction of the set of true /spl Pi//sub 2//sup 0/ sentences to the set of consequences of the lambda calculus with the omega rule. This solves in the affirmative a well known problem of H. Barendregt. The technique of proof has interest in itself and can be extended to prove that the theory which identifies all unsolvable terms together with the omega rule is H/sub 1//sup 1/-complete which solves another long-standing conjecture of H. Barendregt.","PeriodicalId":6322,"journal":{"name":"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science","volume":"17 1","pages":"202-210"},"PeriodicalIF":0.0000,"publicationDate":"2004-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Omega Rule is II_2^0-Hard in the lambda beta -Calculus\",\"authors\":\"B. Intrigila, R. Statman\",\"doi\":\"10.1109/LICS.2004.1319614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a many-one reduction of the set of true /spl Pi//sub 2//sup 0/ sentences to the set of consequences of the lambda calculus with the omega rule. This solves in the affirmative a well known problem of H. Barendregt. The technique of proof has interest in itself and can be extended to prove that the theory which identifies all unsolvable terms together with the omega rule is H/sub 1//sup 1/-complete which solves another long-standing conjecture of H. Barendregt.\",\"PeriodicalId\":6322,\"journal\":{\"name\":\"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"17 1\",\"pages\":\"202-210\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2004.1319614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2004.1319614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们将true /spl Pi// sub2 //sup 0/句集简化为具有规则的λ演算结果集。这就肯定地解决了巴伦支的一个众所周知的问题。证明技术本身就很有趣,并且可以推广到证明与ω规则一起识别所有不可解项的理论是H/sub 1//sup 1/-完备的,这解决了H. Barendregt的另一个长期猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Omega Rule is II_2^0-Hard in the lambda beta -Calculus
We give a many-one reduction of the set of true /spl Pi//sub 2//sup 0/ sentences to the set of consequences of the lambda calculus with the omega rule. This solves in the affirmative a well known problem of H. Barendregt. The technique of proof has interest in itself and can be extended to prove that the theory which identifies all unsolvable terms together with the omega rule is H/sub 1//sup 1/-complete which solves another long-standing conjecture of H. Barendregt.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信