基于分层LSTM的足球动作识别

Takamasa Tsunoda, Y. Komori, M. Matsugu, T. Harada
{"title":"基于分层LSTM的足球动作识别","authors":"Takamasa Tsunoda, Y. Komori, M. Matsugu, T. Harada","doi":"10.1109/CVPRW.2017.25","DOIUrl":null,"url":null,"abstract":"We present a hierarchical recurrent network for understanding team sports activity in image and location sequences. In the hierarchical model, we integrate proposed multiple person-centered features over a temporal sequence based on LSTM's outputs. To achieve this scheme, we introduce the Keeping state in LSTM as one of externally controllable states, and extend the Hierarchical LSTMs to include mechanism for the integration. Experimental results demonstrate effectiveness of the proposed framework involving hierarchical LSTM and person-centered feature. In this study, we demonstrate improvement over the reference model. Specifically, by incorporating the person-centered feature with meta-information (e.g., location data) in our proposed late fusion framework, we also demonstrate increased discriminability of action categories and enhanced robustness against fluctuation in the number of observed players.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"30 4 1","pages":"155-163"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Football Action Recognition Using Hierarchical LSTM\",\"authors\":\"Takamasa Tsunoda, Y. Komori, M. Matsugu, T. Harada\",\"doi\":\"10.1109/CVPRW.2017.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a hierarchical recurrent network for understanding team sports activity in image and location sequences. In the hierarchical model, we integrate proposed multiple person-centered features over a temporal sequence based on LSTM's outputs. To achieve this scheme, we introduce the Keeping state in LSTM as one of externally controllable states, and extend the Hierarchical LSTMs to include mechanism for the integration. Experimental results demonstrate effectiveness of the proposed framework involving hierarchical LSTM and person-centered feature. In this study, we demonstrate improvement over the reference model. Specifically, by incorporating the person-centered feature with meta-information (e.g., location data) in our proposed late fusion framework, we also demonstrate increased discriminability of action categories and enhanced robustness against fluctuation in the number of observed players.\",\"PeriodicalId\":6668,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"30 4 1\",\"pages\":\"155-163\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2017.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

我们提出了一个层次递归网络来理解图像和位置序列中的团队体育活动。在分层模型中,我们在基于LSTM输出的时间序列上集成了提出的多个以人为中心的特征。为了实现该方案,我们在LSTM中引入保持状态作为一种外部可控状态,并对分层LSTM进行扩展,使其包含集成机制。实验结果验证了该框架的有效性,该框架结合了分层LSTM和以人为中心的特征。在本研究中,我们证明了对参考模型的改进。具体来说,通过将以人为中心的特征与元信息(如位置数据)结合到我们提出的后期融合框架中,我们还证明了行动类别的可辨别性增强,以及对观察玩家数量波动的鲁棒性增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Football Action Recognition Using Hierarchical LSTM
We present a hierarchical recurrent network for understanding team sports activity in image and location sequences. In the hierarchical model, we integrate proposed multiple person-centered features over a temporal sequence based on LSTM's outputs. To achieve this scheme, we introduce the Keeping state in LSTM as one of externally controllable states, and extend the Hierarchical LSTMs to include mechanism for the integration. Experimental results demonstrate effectiveness of the proposed framework involving hierarchical LSTM and person-centered feature. In this study, we demonstrate improvement over the reference model. Specifically, by incorporating the person-centered feature with meta-information (e.g., location data) in our proposed late fusion framework, we also demonstrate increased discriminability of action categories and enhanced robustness against fluctuation in the number of observed players.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信