ZrO2纳米颗粒对AA7075复合材料力学和摩擦学性能的影响

IF 4.2 Q2 NANOSCIENCE & NANOTECHNOLOGY
M. Reddy, H. Raju, N. Banapurmath, V. V. Meti
{"title":"ZrO2纳米颗粒对AA7075复合材料力学和摩擦学性能的影响","authors":"M. Reddy, H. Raju, N. Banapurmath, V. V. Meti","doi":"10.1177/2397791420981525","DOIUrl":null,"url":null,"abstract":"A well-known AA7075 alloy used for most of the structural, aerospace, and automobile applications due to its excellent properties such as high strength, corrosion-resistant, and low density. To encourage industrialists, the physical and mechanical properties of the composite has to improve by reinforcing hard ceramic particles. In this investigation varying wt.% of hard ZrO2 (zirconium dioxide) particles (0.75, 1, 1.25, 1.5, 1.75, and 2 wt.%) are reinforced in AA7075 matrix alloy to form a composite. Motorized stir casting technique induced to distribute reinforcement particles homogeneously. The SEM micrographs reveal that uniform distribution of ZrO2 particles can be achieved after inducing motorized stir casting technique into the molten composite. The experimental test results revealed that the addition of ZrO2 particles enhanced the hardness and tensile strength of the AA7075/ZrO2 composite as compared to base matrix material. Among all composites, AA7075/1.5ZrO2 show higher hardness and strength.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Influence of ZrO2 nano particles on the behavior of mechanical and tribological properties of the AA7075 composite\",\"authors\":\"M. Reddy, H. Raju, N. Banapurmath, V. V. Meti\",\"doi\":\"10.1177/2397791420981525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A well-known AA7075 alloy used for most of the structural, aerospace, and automobile applications due to its excellent properties such as high strength, corrosion-resistant, and low density. To encourage industrialists, the physical and mechanical properties of the composite has to improve by reinforcing hard ceramic particles. In this investigation varying wt.% of hard ZrO2 (zirconium dioxide) particles (0.75, 1, 1.25, 1.5, 1.75, and 2 wt.%) are reinforced in AA7075 matrix alloy to form a composite. Motorized stir casting technique induced to distribute reinforcement particles homogeneously. The SEM micrographs reveal that uniform distribution of ZrO2 particles can be achieved after inducing motorized stir casting technique into the molten composite. The experimental test results revealed that the addition of ZrO2 particles enhanced the hardness and tensile strength of the AA7075/ZrO2 composite as compared to base matrix material. Among all composites, AA7075/1.5ZrO2 show higher hardness and strength.\",\"PeriodicalId\":44789,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2020-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2397791420981525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2397791420981525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 5

摘要

一种著名的AA7075合金,由于其优异的性能,如高强度、耐腐蚀和低密度,用于大多数结构、航空航天和汽车应用。为了鼓励工业家,复合材料的物理和机械性能必须通过增强硬陶瓷颗粒来改善。在本研究中,不同wt %的硬ZrO2(二氧化锆)颗粒(0.75、1、1.25、1.5、1.75和2 wt %)在AA7075基体合金中增强,形成复合材料。电动搅拌铸造技术诱导增强颗粒均匀分布。SEM显微形貌显示,在复合材料中引入电动搅拌铸造技术后,可以实现ZrO2颗粒的均匀分布。实验结果表明,与基基材料相比,ZrO2颗粒的加入提高了AA7075/ZrO2复合材料的硬度和抗拉强度。在所有复合材料中,AA7075/1.5ZrO2具有较高的硬度和强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of ZrO2 nano particles on the behavior of mechanical and tribological properties of the AA7075 composite
A well-known AA7075 alloy used for most of the structural, aerospace, and automobile applications due to its excellent properties such as high strength, corrosion-resistant, and low density. To encourage industrialists, the physical and mechanical properties of the composite has to improve by reinforcing hard ceramic particles. In this investigation varying wt.% of hard ZrO2 (zirconium dioxide) particles (0.75, 1, 1.25, 1.5, 1.75, and 2 wt.%) are reinforced in AA7075 matrix alloy to form a composite. Motorized stir casting technique induced to distribute reinforcement particles homogeneously. The SEM micrographs reveal that uniform distribution of ZrO2 particles can be achieved after inducing motorized stir casting technique into the molten composite. The experimental test results revealed that the addition of ZrO2 particles enhanced the hardness and tensile strength of the AA7075/ZrO2 composite as compared to base matrix material. Among all composites, AA7075/1.5ZrO2 show higher hardness and strength.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
1.70%
发文量
24
期刊介绍: Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信