{"title":"ZrO2纳米颗粒对AA7075复合材料力学和摩擦学性能的影响","authors":"M. Reddy, H. Raju, N. Banapurmath, V. V. Meti","doi":"10.1177/2397791420981525","DOIUrl":null,"url":null,"abstract":"A well-known AA7075 alloy used for most of the structural, aerospace, and automobile applications due to its excellent properties such as high strength, corrosion-resistant, and low density. To encourage industrialists, the physical and mechanical properties of the composite has to improve by reinforcing hard ceramic particles. In this investigation varying wt.% of hard ZrO2 (zirconium dioxide) particles (0.75, 1, 1.25, 1.5, 1.75, and 2 wt.%) are reinforced in AA7075 matrix alloy to form a composite. Motorized stir casting technique induced to distribute reinforcement particles homogeneously. The SEM micrographs reveal that uniform distribution of ZrO2 particles can be achieved after inducing motorized stir casting technique into the molten composite. The experimental test results revealed that the addition of ZrO2 particles enhanced the hardness and tensile strength of the AA7075/ZrO2 composite as compared to base matrix material. Among all composites, AA7075/1.5ZrO2 show higher hardness and strength.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Influence of ZrO2 nano particles on the behavior of mechanical and tribological properties of the AA7075 composite\",\"authors\":\"M. Reddy, H. Raju, N. Banapurmath, V. V. Meti\",\"doi\":\"10.1177/2397791420981525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A well-known AA7075 alloy used for most of the structural, aerospace, and automobile applications due to its excellent properties such as high strength, corrosion-resistant, and low density. To encourage industrialists, the physical and mechanical properties of the composite has to improve by reinforcing hard ceramic particles. In this investigation varying wt.% of hard ZrO2 (zirconium dioxide) particles (0.75, 1, 1.25, 1.5, 1.75, and 2 wt.%) are reinforced in AA7075 matrix alloy to form a composite. Motorized stir casting technique induced to distribute reinforcement particles homogeneously. The SEM micrographs reveal that uniform distribution of ZrO2 particles can be achieved after inducing motorized stir casting technique into the molten composite. The experimental test results revealed that the addition of ZrO2 particles enhanced the hardness and tensile strength of the AA7075/ZrO2 composite as compared to base matrix material. Among all composites, AA7075/1.5ZrO2 show higher hardness and strength.\",\"PeriodicalId\":44789,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2020-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2397791420981525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2397791420981525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Influence of ZrO2 nano particles on the behavior of mechanical and tribological properties of the AA7075 composite
A well-known AA7075 alloy used for most of the structural, aerospace, and automobile applications due to its excellent properties such as high strength, corrosion-resistant, and low density. To encourage industrialists, the physical and mechanical properties of the composite has to improve by reinforcing hard ceramic particles. In this investigation varying wt.% of hard ZrO2 (zirconium dioxide) particles (0.75, 1, 1.25, 1.5, 1.75, and 2 wt.%) are reinforced in AA7075 matrix alloy to form a composite. Motorized stir casting technique induced to distribute reinforcement particles homogeneously. The SEM micrographs reveal that uniform distribution of ZrO2 particles can be achieved after inducing motorized stir casting technique into the molten composite. The experimental test results revealed that the addition of ZrO2 particles enhanced the hardness and tensile strength of the AA7075/ZrO2 composite as compared to base matrix material. Among all composites, AA7075/1.5ZrO2 show higher hardness and strength.
期刊介绍:
Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.