M. Nowlan, S. Hogan, G. Darkazalli, S. Sutherland, W. Breen, J. Murach, J. Patterson
{"title":"薄硅太阳能电池互连的先进自动化技术","authors":"M. Nowlan, S. Hogan, G. Darkazalli, S. Sutherland, W. Breen, J. Murach, J. Patterson","doi":"10.1109/WCPEC.1994.520088","DOIUrl":null,"url":null,"abstract":"The objective of this work is to reduce the cost and improve the quality of terrestrial photovoltaic modules by developing automated high-throughput (5 MW/yr) processes for interconnecting thin silicon solar cells. New low-stress, high-throughput processes have been developed for cell loading, alignment, and inspection, interconnect ribbon handling, flux application, ribbon-to-cell soldering, cell string handling, and I-V testing of assembled cell strings. Both standard thickness (350 /spl mu/m) and thin (200 /spl mu/m) cells have been used to evaluate and refine these processes.","PeriodicalId":20517,"journal":{"name":"Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Advanced automation techniques for interconnecting thin silicon solar cells\",\"authors\":\"M. Nowlan, S. Hogan, G. Darkazalli, S. Sutherland, W. Breen, J. Murach, J. Patterson\",\"doi\":\"10.1109/WCPEC.1994.520088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this work is to reduce the cost and improve the quality of terrestrial photovoltaic modules by developing automated high-throughput (5 MW/yr) processes for interconnecting thin silicon solar cells. New low-stress, high-throughput processes have been developed for cell loading, alignment, and inspection, interconnect ribbon handling, flux application, ribbon-to-cell soldering, cell string handling, and I-V testing of assembled cell strings. Both standard thickness (350 /spl mu/m) and thin (200 /spl mu/m) cells have been used to evaluate and refine these processes.\",\"PeriodicalId\":20517,\"journal\":{\"name\":\"Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCPEC.1994.520088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCPEC.1994.520088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advanced automation techniques for interconnecting thin silicon solar cells
The objective of this work is to reduce the cost and improve the quality of terrestrial photovoltaic modules by developing automated high-throughput (5 MW/yr) processes for interconnecting thin silicon solar cells. New low-stress, high-throughput processes have been developed for cell loading, alignment, and inspection, interconnect ribbon handling, flux application, ribbon-to-cell soldering, cell string handling, and I-V testing of assembled cell strings. Both standard thickness (350 /spl mu/m) and thin (200 /spl mu/m) cells have been used to evaluate and refine these processes.