群拟群型部分作用的伽罗瓦对应

IF 0.4 4区 数学 Q4 MATHEMATICS
Dirceu Bagio, Alveri Sant’Ana, Thaísa Tamusiunas
{"title":"群拟群型部分作用的伽罗瓦对应","authors":"Dirceu Bagio, Alveri Sant’Ana, Thaísa Tamusiunas","doi":"10.36045/j.bbms.210807","DOIUrl":null,"url":null,"abstract":"Let G be a finite groupoid and α = (Sg, αg)g∈G a unital partial action of group-type of G on a commutative ring S = ⊕y∈G0Sy. We shall prove a Galois correspondence between a class of wide subgroupoids of G and a class of subrings of S. We recover known results for global groupoid actions and we give several examples to illustrate the correspondence.","PeriodicalId":55309,"journal":{"name":"Bulletin of the Belgian Mathematical Society-Simon Stevin","volume":"18 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Galois correspondence for group-type partial actions of groupoids\",\"authors\":\"Dirceu Bagio, Alveri Sant’Ana, Thaísa Tamusiunas\",\"doi\":\"10.36045/j.bbms.210807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a finite groupoid and α = (Sg, αg)g∈G a unital partial action of group-type of G on a commutative ring S = ⊕y∈G0Sy. We shall prove a Galois correspondence between a class of wide subgroupoids of G and a class of subrings of S. We recover known results for global groupoid actions and we give several examples to illustrate the correspondence.\",\"PeriodicalId\":55309,\"journal\":{\"name\":\"Bulletin of the Belgian Mathematical Society-Simon Stevin\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Belgian Mathematical Society-Simon Stevin\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.36045/j.bbms.210807\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Belgian Mathematical Society-Simon Stevin","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.36045/j.bbms.210807","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

设G为有限群仿,且α = (Sg, α G) G∈G, G是交换环S =⊕y∈G0Sy上G群型的一元偏作用。我们证明了G的一类宽子群与s的一类子群之间的伽罗瓦对应关系。我们恢复了已知的关于全局群作用的结果,并给出了几个例子来说明这种对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Galois correspondence for group-type partial actions of groupoids
Let G be a finite groupoid and α = (Sg, αg)g∈G a unital partial action of group-type of G on a commutative ring S = ⊕y∈G0Sy. We shall prove a Galois correspondence between a class of wide subgroupoids of G and a class of subrings of S. We recover known results for global groupoid actions and we give several examples to illustrate the correspondence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
6-12 weeks
期刊介绍: The Bulletin of the Belgian Mathematical Society - Simon Stevin (BBMS) is a peer-reviewed journal devoted to recent developments in all areas in pure and applied mathematics. It is published as one yearly volume, containing five issues. The main focus lies on high level original research papers. They should aim to a broader mathematical audience in the sense that a well-written introduction is attractive to mathematicians outside the circle of experts in the subject, bringing motivation, background information, history and philosophy. The content has to be substantial enough: short one-small-result papers will not be taken into account in general, unless there are some particular arguments motivating publication, like an original point of view, a new short proof of a famous result etc. The BBMS also publishes expository papers that bring the state of the art of a current mainstream topic in mathematics. Here it is even more important that at leat a substantial part of the paper is accessible to a broader audience of mathematicians. The BBMS publishes papers in English, Dutch, French and German. All papers should have an abstract in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信