_ (k) m-模的局部上同调与多重梯度正则性

Pub Date : 2021-06-01 DOI:10.1216/jca.2021.13.235
Liping Li, Eric Ramos
{"title":"_ (k) m-模的局部上同调与多重梯度正则性","authors":"Liping Li, Eric Ramos","doi":"10.1216/jca.2021.13.235","DOIUrl":null,"url":null,"abstract":"We develop a local cohomology theory for ℱℐm-modules, and show that it in many ways mimics the classical theory for multigraded modules over a polynomial ring. In particular, we define an invariant of ℱℐm-modules using this local cohomology theory which closely resembles an invariant of multigraded modules over Cox rings defined by Maclagan and Smith. It is then shown that this invariant behaves almost identically to the invariant of Maclagan and Smith.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Local cohomology and the multigraded regularity of ℱℐm-modules\",\"authors\":\"Liping Li, Eric Ramos\",\"doi\":\"10.1216/jca.2021.13.235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a local cohomology theory for ℱℐm-modules, and show that it in many ways mimics the classical theory for multigraded modules over a polynomial ring. In particular, we define an invariant of ℱℐm-modules using this local cohomology theory which closely resembles an invariant of multigraded modules over Cox rings defined by Maclagan and Smith. It is then shown that this invariant behaves almost identically to the invariant of Maclagan and Smith.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1216/jca.2021.13.235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2021.13.235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们建立了一个关于一个多项式环上的多重模的局部上同理论,并证明了它在许多方面与经典理论相似。特别地,我们利用这个局部上同论定义了一个与Maclagan和Smith定义的Cox环上的多阶模的不变量非常相似的不变量。然后证明了该不变量的行为与Maclagan和Smith的不变量几乎相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Local cohomology and the multigraded regularity of ℱℐm-modules
We develop a local cohomology theory for ℱℐm-modules, and show that it in many ways mimics the classical theory for multigraded modules over a polynomial ring. In particular, we define an invariant of ℱℐm-modules using this local cohomology theory which closely resembles an invariant of multigraded modules over Cox rings defined by Maclagan and Smith. It is then shown that this invariant behaves almost identically to the invariant of Maclagan and Smith.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信