幂函数的分数阶积分可微性分析及超几何表示

FG Rodrigues, Capelas de Oliveira
{"title":"幂函数的分数阶积分可微性分析及超几何表示","authors":"FG Rodrigues, Capelas de Oliveira","doi":"10.4172/2168-9679.1000428","DOIUrl":null,"url":null,"abstract":"In this work we show that it is possible to calculate the fractional integrals and derivatives of order (using the Riemann-Liouville formulation) of power functions (t-*)β with β being any real value, so long as one pays attention to the proper choice of the lower and upper limits according to the original functions domain. We, therefore, obtain valid expressions that are described in terms of function series of the type (t-*)± α+k and we also show that they are related to the famous hypergeometric functions of the Mathematical-Physics.","PeriodicalId":15007,"journal":{"name":"Journal of Applied and Computational Mathematics","volume":"42 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the Fractional Integrodifferentiability of Power Functions and Hypergeometric Representation\",\"authors\":\"FG Rodrigues, Capelas de Oliveira\",\"doi\":\"10.4172/2168-9679.1000428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we show that it is possible to calculate the fractional integrals and derivatives of order (using the Riemann-Liouville formulation) of power functions (t-*)β with β being any real value, so long as one pays attention to the proper choice of the lower and upper limits according to the original functions domain. We, therefore, obtain valid expressions that are described in terms of function series of the type (t-*)± α+k and we also show that they are related to the famous hypergeometric functions of the Mathematical-Physics.\",\"PeriodicalId\":15007,\"journal\":{\"name\":\"Journal of Applied and Computational Mathematics\",\"volume\":\"42 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied and Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2168-9679.1000428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9679.1000428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们证明了可以计算幂函数(t-*)β的分数阶积分和阶导数(使用Riemann-Liouville公式),β是任何实值,只要注意根据原函数定义域适当选择下限和上限。因此,我们得到了用(t-*)±α+k型函数级数描述的有效表达式,并证明了它们与数理化中著名的超几何函数有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the Fractional Integrodifferentiability of Power Functions and Hypergeometric Representation
In this work we show that it is possible to calculate the fractional integrals and derivatives of order (using the Riemann-Liouville formulation) of power functions (t-*)β with β being any real value, so long as one pays attention to the proper choice of the lower and upper limits according to the original functions domain. We, therefore, obtain valid expressions that are described in terms of function series of the type (t-*)± α+k and we also show that they are related to the famous hypergeometric functions of the Mathematical-Physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信