关于双曲值测度

C. Ghosh, S. Biswas
{"title":"关于双曲值测度","authors":"C. Ghosh, S. Biswas","doi":"10.1109/EDCT.2018.8405075","DOIUrl":null,"url":null,"abstract":"In this article we modified the definition of hyperbolic measure given by R. Kumar and K. Sharma by introducing plus hyperbolic infinity and minus hyperbolic infinity. Also we introduced the concept of hyperbolic valued signed measure and proved some theorems on it. AMS Subject Classification (2010) : 28A12.","PeriodicalId":6507,"journal":{"name":"2018 Emerging Trends in Electronic Devices and Computational Techniques (EDCT)","volume":"15 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the hyperbolic valued measure\",\"authors\":\"C. Ghosh, S. Biswas\",\"doi\":\"10.1109/EDCT.2018.8405075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we modified the definition of hyperbolic measure given by R. Kumar and K. Sharma by introducing plus hyperbolic infinity and minus hyperbolic infinity. Also we introduced the concept of hyperbolic valued signed measure and proved some theorems on it. AMS Subject Classification (2010) : 28A12.\",\"PeriodicalId\":6507,\"journal\":{\"name\":\"2018 Emerging Trends in Electronic Devices and Computational Techniques (EDCT)\",\"volume\":\"15 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Emerging Trends in Electronic Devices and Computational Techniques (EDCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDCT.2018.8405075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Emerging Trends in Electronic Devices and Computational Techniques (EDCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDCT.2018.8405075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文通过引入正双曲无穷和负双曲无穷,修正了R. Kumar和K. Sharma给出的双曲测度的定义。同时引入了双曲值符号测度的概念,并证明了有关双曲值符号测度的定理。AMS学科分类(2010):28A12。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the hyperbolic valued measure
In this article we modified the definition of hyperbolic measure given by R. Kumar and K. Sharma by introducing plus hyperbolic infinity and minus hyperbolic infinity. Also we introduced the concept of hyperbolic valued signed measure and proved some theorems on it. AMS Subject Classification (2010) : 28A12.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信