稀疏FGLM采用块Wiedemann算法

Seung Gyu Hyun, Vincent Neiger, Hamid Rahkooy, É. Schost
{"title":"稀疏FGLM采用块Wiedemann算法","authors":"Seung Gyu Hyun, Vincent Neiger, Hamid Rahkooy, É. Schost","doi":"10.1145/3338637.3338641","DOIUrl":null,"url":null,"abstract":"Overview. Computing the Gröbner basis of an ideal with respect to a term ordering is an essential step in solving systems of polynomials; in what follows, we restrict our attention to systems with finitely many solutions. Certain term orderings, such as the degree reverse lexicographical ordering (degrevlex), make the computation of the Gröbner basis faster, while other orderings, such as the lexicographical ordering (lex), make it easier to find the coordinates of the solutions. Thus, one typically first computes a Gröbner basis for the degrevlex ordering, and then converts it to either a lex Gröbner basis or a related representation, such as Rouillier's Rational Univariate Representation [8].","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"48 1","pages":"123-125"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse FGLM using the block Wiedemann algorithm\",\"authors\":\"Seung Gyu Hyun, Vincent Neiger, Hamid Rahkooy, É. Schost\",\"doi\":\"10.1145/3338637.3338641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Overview. Computing the Gröbner basis of an ideal with respect to a term ordering is an essential step in solving systems of polynomials; in what follows, we restrict our attention to systems with finitely many solutions. Certain term orderings, such as the degree reverse lexicographical ordering (degrevlex), make the computation of the Gröbner basis faster, while other orderings, such as the lexicographical ordering (lex), make it easier to find the coordinates of the solutions. Thus, one typically first computes a Gröbner basis for the degrevlex ordering, and then converts it to either a lex Gröbner basis or a related representation, such as Rouillier's Rational Univariate Representation [8].\",\"PeriodicalId\":7093,\"journal\":{\"name\":\"ACM Commun. Comput. Algebra\",\"volume\":\"48 1\",\"pages\":\"123-125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Commun. Comput. Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3338637.3338641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Commun. Comput. Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338637.3338641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

概述。计算关于项排序的理想的Gröbner基是求解多项式系统的重要步骤;在接下来的内容中,我们将注意力限制在具有有限多个解的系统上。某些项的顺序,如度反向字典顺序(degrevlex),使Gröbner基的计算速度更快,而其他顺序,如字典顺序(lex),使查找解的坐标更容易。因此,通常首先为degrevlex排序计算Gröbner基,然后将其转换为lex Gröbner基或相关表示,如Rouillier的有理单变量表示[8]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse FGLM using the block Wiedemann algorithm
Overview. Computing the Gröbner basis of an ideal with respect to a term ordering is an essential step in solving systems of polynomials; in what follows, we restrict our attention to systems with finitely many solutions. Certain term orderings, such as the degree reverse lexicographical ordering (degrevlex), make the computation of the Gröbner basis faster, while other orderings, such as the lexicographical ordering (lex), make it easier to find the coordinates of the solutions. Thus, one typically first computes a Gröbner basis for the degrevlex ordering, and then converts it to either a lex Gröbner basis or a related representation, such as Rouillier's Rational Univariate Representation [8].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信