相干环境下备用主波束零化算法的性能改进

B. Chang, Chang-Dae Jeon
{"title":"相干环境下备用主波束零化算法的性能改进","authors":"B. Chang, Chang-Dae Jeon","doi":"10.1109/APS.2006.1710575","DOIUrl":null,"url":null,"abstract":"The performance of the AMN algorithm is significantly improved by adjusting the convergence parameter for the unit gain constraint while that for the null constraint is fixed during adaptive process in coherent environment. This paper demonstrated that the AMN algorithm in general performs better than the conventional methods with respect to mean square error and the phase delay of the array output to the desired signal. Also, it is shown that the AMN algorithm is robust to increasing number of coherent interferences","PeriodicalId":6423,"journal":{"name":"2006 IEEE Antennas and Propagation Society International Symposium","volume":"50 1","pages":"525-528"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance improvement of alternate mainbeam nulling algorithm in coherent environment\",\"authors\":\"B. Chang, Chang-Dae Jeon\",\"doi\":\"10.1109/APS.2006.1710575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of the AMN algorithm is significantly improved by adjusting the convergence parameter for the unit gain constraint while that for the null constraint is fixed during adaptive process in coherent environment. This paper demonstrated that the AMN algorithm in general performs better than the conventional methods with respect to mean square error and the phase delay of the array output to the desired signal. Also, it is shown that the AMN algorithm is robust to increasing number of coherent interferences\",\"PeriodicalId\":6423,\"journal\":{\"name\":\"2006 IEEE Antennas and Propagation Society International Symposium\",\"volume\":\"50 1\",\"pages\":\"525-528\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Antennas and Propagation Society International Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APS.2006.1710575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Antennas and Propagation Society International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2006.1710575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在相干环境下的自适应过程中,对单位增益约束的收敛参数进行调整可以显著提高AMN算法的性能,而对零约束的收敛参数是固定的。本文证明,在均方误差和阵列输出到期望信号的相位延迟方面,AMN算法总体上优于传统方法。结果表明,该算法对不断增加的相干干扰具有较强的鲁棒性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance improvement of alternate mainbeam nulling algorithm in coherent environment
The performance of the AMN algorithm is significantly improved by adjusting the convergence parameter for the unit gain constraint while that for the null constraint is fixed during adaptive process in coherent environment. This paper demonstrated that the AMN algorithm in general performs better than the conventional methods with respect to mean square error and the phase delay of the array output to the desired signal. Also, it is shown that the AMN algorithm is robust to increasing number of coherent interferences
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信