椭圆算子长程扰动的广义散射相位

Jean-Marc Bouclet
{"title":"椭圆算子长程扰动的广义散射相位","authors":"Jean-Marc Bouclet","doi":"10.1016/S0764-4442(01)02144-9","DOIUrl":null,"url":null,"abstract":"<div><p>We show that limits on the real axis of arguments of regularized relative determinants for differential operators on <span><math><mtext>R</mtext><msup><mi></mi><mn>d</mn></msup></math></span>, exist in the weak sense. We call these limits generalized scattering phases. They extend, in the case of long range perturbations, the usual definition of scattering phase given by Birman–Krein theory. In Euclidean scattering, we give high energy expansions under a non-trapping assumption.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 9","pages":"Pages 845-850"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02144-9","citationCount":"1","resultStr":"{\"title\":\"Generalized scattering phase for long range perturbations of elliptic operators\",\"authors\":\"Jean-Marc Bouclet\",\"doi\":\"10.1016/S0764-4442(01)02144-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that limits on the real axis of arguments of regularized relative determinants for differential operators on <span><math><mtext>R</mtext><msup><mi></mi><mn>d</mn></msup></math></span>, exist in the weak sense. We call these limits generalized scattering phases. They extend, in the case of long range perturbations, the usual definition of scattering phase given by Birman–Krein theory. In Euclidean scattering, we give high energy expansions under a non-trapping assumption.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 9\",\"pages\":\"Pages 845-850\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02144-9\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201021449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了在弱意义上,对于Rd上的微分算子,正则化相对行列式的实轴上存在极限。我们称这些极限为广义散射相。在长距离扰动的情况下,它们扩展了伯曼-克莱恩理论给出的散射相位的通常定义。在欧几里得散射中,我们给出了非俘获假设下的高能量膨胀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized scattering phase for long range perturbations of elliptic operators

We show that limits on the real axis of arguments of regularized relative determinants for differential operators on Rd, exist in the weak sense. We call these limits generalized scattering phases. They extend, in the case of long range perturbations, the usual definition of scattering phase given by Birman–Krein theory. In Euclidean scattering, we give high energy expansions under a non-trapping assumption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信