{"title":"对数学直觉概念的思考","authors":"Lina María Peña-Páez","doi":"10.15304/ag.39.2.6299","DOIUrl":null,"url":null,"abstract":"La historia de la matemática muestra como la intuición matemática ha estado presente en la invención y desarrollo de conceptos, teorías y procedimientos matemáticos. Así mismo, ha permeado el debate filosófico, los fundamentos de la matemática y los discursos educativos; otorgándole vigencia al estudio de este tema. En el presente artículo, se exponen los argumentos bajo los cuales es posible sustentar que la intuición es un proceso, que toma ideas que se presentan, inicialmente de manera “desordenada”, y que gracias al contexto y los conocimientos previos del individuo las centran en una idea “fija” que será incorporada a la matemática por la lógica y la formalización.","PeriodicalId":41083,"journal":{"name":"Agora-Papeles de Filosofia","volume":"40 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consideraciones sobre la noción de intuición matemática\",\"authors\":\"Lina María Peña-Páez\",\"doi\":\"10.15304/ag.39.2.6299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"La historia de la matemática muestra como la intuición matemática ha estado presente en la invención y desarrollo de conceptos, teorías y procedimientos matemáticos. Así mismo, ha permeado el debate filosófico, los fundamentos de la matemática y los discursos educativos; otorgándole vigencia al estudio de este tema. En el presente artículo, se exponen los argumentos bajo los cuales es posible sustentar que la intuición es un proceso, que toma ideas que se presentan, inicialmente de manera “desordenada”, y que gracias al contexto y los conocimientos previos del individuo las centran en una idea “fija” que será incorporada a la matemática por la lógica y la formalización.\",\"PeriodicalId\":41083,\"journal\":{\"name\":\"Agora-Papeles de Filosofia\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agora-Papeles de Filosofia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15304/ag.39.2.6299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"PHILOSOPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agora-Papeles de Filosofia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15304/ag.39.2.6299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"PHILOSOPHY","Score":null,"Total":0}
Consideraciones sobre la noción de intuición matemática
La historia de la matemática muestra como la intuición matemática ha estado presente en la invención y desarrollo de conceptos, teorías y procedimientos matemáticos. Así mismo, ha permeado el debate filosófico, los fundamentos de la matemática y los discursos educativos; otorgándole vigencia al estudio de este tema. En el presente artículo, se exponen los argumentos bajo los cuales es posible sustentar que la intuición es un proceso, que toma ideas que se presentan, inicialmente de manera “desordenada”, y que gracias al contexto y los conocimientos previos del individuo las centran en una idea “fija” que será incorporada a la matemática por la lógica y la formalización.