探索性块建模的图论表述

Alexander Bille, Niels Grüttemeier, Christian Komusiewicz, Nils Morawietz
{"title":"探索性块建模的图论表述","authors":"Alexander Bille, Niels Grüttemeier, Christian Komusiewicz, Nils Morawietz","doi":"10.4230/LIPIcs.SEA.2023.14","DOIUrl":null,"url":null,"abstract":"We present a new simple graph-theoretic formulation of the exploratory blockmodeling problem on undirected and unweighted one-mode networks. Our formulation takes as input the network G and the maximum number t of blocks for the solution model. The task is to find a minimum-size set of edge insertions and deletions that transform the input graph G into a graph G ′ with at most t neighborhood classes. Herein, a neighborhood class is a maximal set of vertices with the same neighborhood. The neighborhood classes of G ′ directly give the blocks and block interactions of the computed blockmodel. We analyze the classic and parameterized complexity of the exploratory blockmodeling problem, provide a branch-and-bound algorithm, an ILP formulation and several heuristics. Finally, we compare our exact algorithms to previous ILP-based approaches and show that the new algorithms are faster for t ≥ 4. 2012 ACM","PeriodicalId":9448,"journal":{"name":"Bulletin of the Society of Sea Water Science, Japan","volume":"1 1","pages":"14:1-14:20"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Graph-Theoretic Formulation of Exploratory Blockmodeling\",\"authors\":\"Alexander Bille, Niels Grüttemeier, Christian Komusiewicz, Nils Morawietz\",\"doi\":\"10.4230/LIPIcs.SEA.2023.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new simple graph-theoretic formulation of the exploratory blockmodeling problem on undirected and unweighted one-mode networks. Our formulation takes as input the network G and the maximum number t of blocks for the solution model. The task is to find a minimum-size set of edge insertions and deletions that transform the input graph G into a graph G ′ with at most t neighborhood classes. Herein, a neighborhood class is a maximal set of vertices with the same neighborhood. The neighborhood classes of G ′ directly give the blocks and block interactions of the computed blockmodel. We analyze the classic and parameterized complexity of the exploratory blockmodeling problem, provide a branch-and-bound algorithm, an ILP formulation and several heuristics. Finally, we compare our exact algorithms to previous ILP-based approaches and show that the new algorithms are faster for t ≥ 4. 2012 ACM\",\"PeriodicalId\":9448,\"journal\":{\"name\":\"Bulletin of the Society of Sea Water Science, Japan\",\"volume\":\"1 1\",\"pages\":\"14:1-14:20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Society of Sea Water Science, Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.SEA.2023.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Society of Sea Water Science, Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SEA.2023.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在无向无权单模网络上,我们提出了探索性块建模问题的一个新的简单图论公式。我们的公式以网络G和解模型的最大块数t作为输入。任务是找到一个最小大小的边插入和边删除集合,将输入图G转换成一个最多有t个邻域类的图G '。在这里,邻域类是具有相同邻域的顶点的最大集合。G '的邻域类直接给出了计算块模型的块和块之间的相互作用。我们分析了探索性块建模问题的经典复杂性和参数化复杂性,提供了一个分支定界算法、一个ILP公式和几种启发式方法。最后,我们将我们的精确算法与以前基于ilp的方法进行了比较,并表明新算法在t≥4时更快。2012年ACM
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Graph-Theoretic Formulation of Exploratory Blockmodeling
We present a new simple graph-theoretic formulation of the exploratory blockmodeling problem on undirected and unweighted one-mode networks. Our formulation takes as input the network G and the maximum number t of blocks for the solution model. The task is to find a minimum-size set of edge insertions and deletions that transform the input graph G into a graph G ′ with at most t neighborhood classes. Herein, a neighborhood class is a maximal set of vertices with the same neighborhood. The neighborhood classes of G ′ directly give the blocks and block interactions of the computed blockmodel. We analyze the classic and parameterized complexity of the exploratory blockmodeling problem, provide a branch-and-bound algorithm, an ILP formulation and several heuristics. Finally, we compare our exact algorithms to previous ILP-based approaches and show that the new algorithms are faster for t ≥ 4. 2012 ACM
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信