单调计算的强指数下界

T. Pitassi, Robert Robere
{"title":"单调计算的强指数下界","authors":"T. Pitassi, Robert Robere","doi":"10.1145/3055399.3055478","DOIUrl":null,"url":null,"abstract":"For a universal constant α > 0 we prove size lower bounds of 2α(n) for an explicit function in monotone NP in the following models of computation: monotone formulas, monotone switching networks, monotone span programs, and monotone comparator circuits, where n is the number of variables of the underlying function. Our lower bounds improve on the best previous bounds in each of these models, and are the best possible for any function up to constant factors in the exponent. Moreover, we give one unified proof that is short and fairly elementary.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Strongly exponential lower bounds for monotone computation\",\"authors\":\"T. Pitassi, Robert Robere\",\"doi\":\"10.1145/3055399.3055478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a universal constant α > 0 we prove size lower bounds of 2α(n) for an explicit function in monotone NP in the following models of computation: monotone formulas, monotone switching networks, monotone span programs, and monotone comparator circuits, where n is the number of variables of the underlying function. Our lower bounds improve on the best previous bounds in each of these models, and are the best possible for any function up to constant factors in the exponent. Moreover, we give one unified proof that is short and fairly elementary.\",\"PeriodicalId\":20615,\"journal\":{\"name\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055399.3055478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

对于普遍常数α > 0,我们证明了在单调NP中显式函数的2α(n)的大小下界在以下计算模型中:单调公式,单调交换网络,单调跨规划和单调比较电路,其中n是底层函数的变量数。我们的下界改进了这些模型的最佳上界,并且对于任何函数都是最好的,直到指数中的常数因子。此外,我们还给出了一个简短而相当初等的统一证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strongly exponential lower bounds for monotone computation
For a universal constant α > 0 we prove size lower bounds of 2α(n) for an explicit function in monotone NP in the following models of computation: monotone formulas, monotone switching networks, monotone span programs, and monotone comparator circuits, where n is the number of variables of the underlying function. Our lower bounds improve on the best previous bounds in each of these models, and are the best possible for any function up to constant factors in the exponent. Moreover, we give one unified proof that is short and fairly elementary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信