{"title":"基于cnn的单眼航拍图像联合高度估计与语义标注","authors":"Shivangi Srivastava, M. Volpi, D. Tuia","doi":"10.1109/IGARSS.2017.8128167","DOIUrl":null,"url":null,"abstract":"We aim to jointly estimate height and semantically label monocular aerial images. These two tasks are traditionally addressed separately in remote sensing, despite their strong correlation. Therefore, a model learning both height and classes jointly seems advantageous and so, we propose a multitask Convolutional Neural Network (CNN) architecture with two losses: one performing semantic labeling, and another predicting normalized Digital Surface Model (nDSM) from the pixel values. Since the nDSM/height information is used only in the second loss, there is no need to have a nDSM map at test time, and the model can estimate height automatically on new images. We test our proposed method on a set of sub-decimeter resolution images and show that our model equals the performances of two separate models, but at the cost of a single one.","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"47 1","pages":"5173-5176"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Joint height estimation and semantic labeling of monocular aerial images with CNNS\",\"authors\":\"Shivangi Srivastava, M. Volpi, D. Tuia\",\"doi\":\"10.1109/IGARSS.2017.8128167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We aim to jointly estimate height and semantically label monocular aerial images. These two tasks are traditionally addressed separately in remote sensing, despite their strong correlation. Therefore, a model learning both height and classes jointly seems advantageous and so, we propose a multitask Convolutional Neural Network (CNN) architecture with two losses: one performing semantic labeling, and another predicting normalized Digital Surface Model (nDSM) from the pixel values. Since the nDSM/height information is used only in the second loss, there is no need to have a nDSM map at test time, and the model can estimate height automatically on new images. We test our proposed method on a set of sub-decimeter resolution images and show that our model equals the performances of two separate models, but at the cost of a single one.\",\"PeriodicalId\":6466,\"journal\":{\"name\":\"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"volume\":\"47 1\",\"pages\":\"5173-5176\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2017.8128167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2017.8128167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Joint height estimation and semantic labeling of monocular aerial images with CNNS
We aim to jointly estimate height and semantically label monocular aerial images. These two tasks are traditionally addressed separately in remote sensing, despite their strong correlation. Therefore, a model learning both height and classes jointly seems advantageous and so, we propose a multitask Convolutional Neural Network (CNN) architecture with two losses: one performing semantic labeling, and another predicting normalized Digital Surface Model (nDSM) from the pixel values. Since the nDSM/height information is used only in the second loss, there is no need to have a nDSM map at test time, and the model can estimate height automatically on new images. We test our proposed method on a set of sub-decimeter resolution images and show that our model equals the performances of two separate models, but at the cost of a single one.