自主机器人平台语义视觉技术集成

Charles M. Felps, Michael H. Fick, Keegan R. Kinkade, Jeremy Searock, J. Piepmeier
{"title":"自主机器人平台语义视觉技术集成","authors":"Charles M. Felps, Michael H. Fick, Keegan R. Kinkade, Jeremy Searock, J. Piepmeier","doi":"10.1109/SSST.2010.5442826","DOIUrl":null,"url":null,"abstract":"The Semantic Robot Vision Challenge is a research competition designed to advance the ability of agent's to automatically acquire knowledge and use this knowledge to identity objects in an unknown and unstructured environment. In this paper, we present a complete design and implementation of a robotic system intended to compete in the Semantic Robot Vision Challenge. The system takes a text input document of specific objects to search an online visual database to find a training image. The system then autonomously navigates through a cluttered environment, captures images of objects in the area, and uses the training images to identify objects found in the captured images. The system is complete, robust, and achieved first place in the 2009 competition.","PeriodicalId":6463,"journal":{"name":"2010 42nd Southeastern Symposium on System Theory (SSST)","volume":"42 1","pages":"243-247"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integration of semantic vision techniques for an autonomous robot platform\",\"authors\":\"Charles M. Felps, Michael H. Fick, Keegan R. Kinkade, Jeremy Searock, J. Piepmeier\",\"doi\":\"10.1109/SSST.2010.5442826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Semantic Robot Vision Challenge is a research competition designed to advance the ability of agent's to automatically acquire knowledge and use this knowledge to identity objects in an unknown and unstructured environment. In this paper, we present a complete design and implementation of a robotic system intended to compete in the Semantic Robot Vision Challenge. The system takes a text input document of specific objects to search an online visual database to find a training image. The system then autonomously navigates through a cluttered environment, captures images of objects in the area, and uses the training images to identify objects found in the captured images. The system is complete, robust, and achieved first place in the 2009 competition.\",\"PeriodicalId\":6463,\"journal\":{\"name\":\"2010 42nd Southeastern Symposium on System Theory (SSST)\",\"volume\":\"42 1\",\"pages\":\"243-247\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 42nd Southeastern Symposium on System Theory (SSST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.2010.5442826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 42nd Southeastern Symposium on System Theory (SSST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.2010.5442826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

语义机器人视觉挑战赛是一项研究竞赛,旨在提高智能体在未知和非结构化环境中自动获取知识并使用这些知识识别物体的能力。在本文中,我们提出了一个完整的机器人系统的设计和实现,旨在参加语义机器人视觉挑战赛。该系统以特定对象的文本输入文档为基础,在在线视觉数据库中进行搜索,找到训练图像。然后,该系统在混乱的环境中自主导航,捕获该区域物体的图像,并使用训练图像识别捕获图像中的物体。该系统完整、健壮,并在2009年的竞赛中获得了第一名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of semantic vision techniques for an autonomous robot platform
The Semantic Robot Vision Challenge is a research competition designed to advance the ability of agent's to automatically acquire knowledge and use this knowledge to identity objects in an unknown and unstructured environment. In this paper, we present a complete design and implementation of a robotic system intended to compete in the Semantic Robot Vision Challenge. The system takes a text input document of specific objects to search an online visual database to find a training image. The system then autonomously navigates through a cluttered environment, captures images of objects in the area, and uses the training images to identify objects found in the captured images. The system is complete, robust, and achieved first place in the 2009 competition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信