欧几里德三维空间中推广一般螺旋和斜螺旋曲线的位置向量

IF 0.7 Q2 MATHEMATICS
M. Izid, Abderrazak El Haimi, A. O. Chahdi
{"title":"欧几里德三维空间中推广一般螺旋和斜螺旋曲线的位置向量","authors":"M. Izid, Abderrazak El Haimi, A. O. Chahdi","doi":"10.5556/J.TKJM.52.2021.3463","DOIUrl":null,"url":null,"abstract":"In this paper, we give a new characterization of a k-slant helix which is a generalization of general helix and slant helix. Thereafter, we construct a vector differential equation of the third order to determine the parametric representation of a k-slant helix according to standard frame in Euclidean 3-space. Finally, we apply this method to find the position vector of some examples of 2-slant helix by means of intrinsic equations.","PeriodicalId":45776,"journal":{"name":"Tamkang Journal of Mathematics","volume":"32 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Position Vectors of Curves Generalizing General Helices and Slant Helices in Euclidean 3-Space\",\"authors\":\"M. Izid, Abderrazak El Haimi, A. O. Chahdi\",\"doi\":\"10.5556/J.TKJM.52.2021.3463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we give a new characterization of a k-slant helix which is a generalization of general helix and slant helix. Thereafter, we construct a vector differential equation of the third order to determine the parametric representation of a k-slant helix according to standard frame in Euclidean 3-space. Finally, we apply this method to find the position vector of some examples of 2-slant helix by means of intrinsic equations.\",\"PeriodicalId\":45776,\"journal\":{\"name\":\"Tamkang Journal of Mathematics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tamkang Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5556/J.TKJM.52.2021.3463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tamkang Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5556/J.TKJM.52.2021.3463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文给出了k-斜螺旋的一个新性质,它是一般螺旋和斜螺旋的推广。在此基础上,我们构造了一个三阶矢量微分方程,以确定k-斜螺旋在欧氏三维空间中按照标准坐标系的参数表示。最后,利用本征方程求出了一些2斜螺旋的位置向量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Position Vectors of Curves Generalizing General Helices and Slant Helices in Euclidean 3-Space
In this paper, we give a new characterization of a k-slant helix which is a generalization of general helix and slant helix. Thereafter, we construct a vector differential equation of the third order to determine the parametric representation of a k-slant helix according to standard frame in Euclidean 3-space. Finally, we apply this method to find the position vector of some examples of 2-slant helix by means of intrinsic equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
11
期刊介绍: To promote research interactions between local and overseas researchers, the Department has been publishing an international mathematics journal, the Tamkang Journal of Mathematics. The journal started as a biannual journal in 1970 and is devoted to high-quality original research papers in pure and applied mathematics. In 1985 it has become a quarterly journal. The four issues are out for distribution at the end of March, June, September and December. The articles published in Tamkang Journal of Mathematics cover diverse mathematical disciplines. Submission of papers comes from all over the world. All articles are subjected to peer review from an international pool of referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信