软件可靠性预测中的类不平衡特征选择与集成研究

Q4 Computer Science
Jhansi Lakshmi Potharlanka, Maruthi Padmaja Turumella, R. Pote
{"title":"软件可靠性预测中的类不平衡特征选择与集成研究","authors":"Jhansi Lakshmi Potharlanka, Maruthi Padmaja Turumella, R. Pote","doi":"10.4018/ijossp.2019100102","DOIUrl":null,"url":null,"abstract":"Software quality can be improved by early software defect prediction models. However, class imbalance due to under representation of defects and the irrelevant metrics used to predict them are two major challenges that hinder the model performance. This article presents a new two-stage framework of Ensemble of Hybrid Feature selection (EHF) with Weighted Support Vector Machine Boosting (WSVMBoost), which further enhance the model performance. The EHF is the ensemble feature ranking of feature selection models such as filters and embedded models to select the relevant metrics. The classification ensembles, namely Random Forest, RUSBoost, WSVMBoost, and the base learners, namely Decision Tree, and SVM are also explored in this study using five software reliability datasets. From the statistical tests, EHF with WSVMBoost attained best mean rank in terms of performance than the rest of the feature selection hybrids in predicting the software defects. Additionally, this study has shown that both McCabe and Hasalted method level metrics are equally important in improving the model performance.","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"20 1","pages":"20-43"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on Class Imbalancing Feature Selection and Ensembles on Software Reliability Prediction\",\"authors\":\"Jhansi Lakshmi Potharlanka, Maruthi Padmaja Turumella, R. Pote\",\"doi\":\"10.4018/ijossp.2019100102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software quality can be improved by early software defect prediction models. However, class imbalance due to under representation of defects and the irrelevant metrics used to predict them are two major challenges that hinder the model performance. This article presents a new two-stage framework of Ensemble of Hybrid Feature selection (EHF) with Weighted Support Vector Machine Boosting (WSVMBoost), which further enhance the model performance. The EHF is the ensemble feature ranking of feature selection models such as filters and embedded models to select the relevant metrics. The classification ensembles, namely Random Forest, RUSBoost, WSVMBoost, and the base learners, namely Decision Tree, and SVM are also explored in this study using five software reliability datasets. From the statistical tests, EHF with WSVMBoost attained best mean rank in terms of performance than the rest of the feature selection hybrids in predicting the software defects. Additionally, this study has shown that both McCabe and Hasalted method level metrics are equally important in improving the model performance.\",\"PeriodicalId\":53605,\"journal\":{\"name\":\"International Journal of Open Source Software and Processes\",\"volume\":\"20 1\",\"pages\":\"20-43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Source Software and Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijossp.2019100102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijossp.2019100102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

通过早期的软件缺陷预测模型可以提高软件质量。然而,由于缺陷的表示不足和用于预测它们的不相关度量而导致的类不平衡是阻碍模型性能的两个主要挑战。本文提出了一种新的两阶段混合特征选择与加权支持向量机增强(WSVMBoost)集成框架,进一步提高了模型的性能。EHF是特征选择模型(如过滤器和嵌入模型)的集成特征排序,以选择相关的度量。本文还利用5个软件可靠性数据集,对随机森林(Random Forest)、RUSBoost、WSVMBoost等分类集成,以及决策树(Decision Tree)和支持向量机(SVM)等基础学习器进行了研究。从统计测试来看,在预测软件缺陷方面,带有WSVMBoost的EHF在性能方面比其他特征选择混合体获得了最好的平均排名。此外,本研究表明McCabe和Hasalted方法级度量在改进模型性能方面同样重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on Class Imbalancing Feature Selection and Ensembles on Software Reliability Prediction
Software quality can be improved by early software defect prediction models. However, class imbalance due to under representation of defects and the irrelevant metrics used to predict them are two major challenges that hinder the model performance. This article presents a new two-stage framework of Ensemble of Hybrid Feature selection (EHF) with Weighted Support Vector Machine Boosting (WSVMBoost), which further enhance the model performance. The EHF is the ensemble feature ranking of feature selection models such as filters and embedded models to select the relevant metrics. The classification ensembles, namely Random Forest, RUSBoost, WSVMBoost, and the base learners, namely Decision Tree, and SVM are also explored in this study using five software reliability datasets. From the statistical tests, EHF with WSVMBoost attained best mean rank in terms of performance than the rest of the feature selection hybrids in predicting the software defects. Additionally, this study has shown that both McCabe and Hasalted method level metrics are equally important in improving the model performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
16
期刊介绍: The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信