使用分组数据的收入分配的经典和贝叶斯推断

Tobias Eckernkemper, Bastian Gribisch
{"title":"使用分组数据的收入分配的经典和贝叶斯推断","authors":"Tobias Eckernkemper, Bastian Gribisch","doi":"10.2139/ssrn.3713891","DOIUrl":null,"url":null,"abstract":"We propose a general framework for Maximum Likelihood (ML) and Bayesian estimation of income distributions based on grouped data information. The asymptotic properties of the ML estimators are derived and Bayesian parameter estimates are obtained by Monte-Carlo-Markov-Chain (MCMC) techniques. A comprehensive simulation experiment shows that obtained estimates of the income distribution are very precise and that the proposed estimation framework improves the statistical precision of parameter estimates relative to the classical multinomial likelihood. The estimation approach is finally applied to a set of countries included in the World Bank database PovcalNet.","PeriodicalId":18085,"journal":{"name":"Macroeconomics: Employment","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Classical and Bayesian Inference for Income Distributions using Grouped Data\",\"authors\":\"Tobias Eckernkemper, Bastian Gribisch\",\"doi\":\"10.2139/ssrn.3713891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a general framework for Maximum Likelihood (ML) and Bayesian estimation of income distributions based on grouped data information. The asymptotic properties of the ML estimators are derived and Bayesian parameter estimates are obtained by Monte-Carlo-Markov-Chain (MCMC) techniques. A comprehensive simulation experiment shows that obtained estimates of the income distribution are very precise and that the proposed estimation framework improves the statistical precision of parameter estimates relative to the classical multinomial likelihood. The estimation approach is finally applied to a set of countries included in the World Bank database PovcalNet.\",\"PeriodicalId\":18085,\"journal\":{\"name\":\"Macroeconomics: Employment\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macroeconomics: Employment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3713891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macroeconomics: Employment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3713891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们提出了一个基于分组数据信息的收入分布的最大似然(ML)和贝叶斯估计的一般框架。利用蒙特卡罗-马尔可夫链(Monte-Carlo-Markov-Chain, MCMC)技术,得到了ML估计量的渐近性质和贝叶斯参数估计。综合模拟实验表明,所得的收入分布估计非常精确,所提出的估计框架相对于经典的多项似然估计提高了参数估计的统计精度。最后将这种估计方法应用于世界银行数据库PovcalNet中的一组国家。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classical and Bayesian Inference for Income Distributions using Grouped Data
We propose a general framework for Maximum Likelihood (ML) and Bayesian estimation of income distributions based on grouped data information. The asymptotic properties of the ML estimators are derived and Bayesian parameter estimates are obtained by Monte-Carlo-Markov-Chain (MCMC) techniques. A comprehensive simulation experiment shows that obtained estimates of the income distribution are very precise and that the proposed estimation framework improves the statistical precision of parameter estimates relative to the classical multinomial likelihood. The estimation approach is finally applied to a set of countries included in the World Bank database PovcalNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信