{"title":"小商最小对数差异","authors":"Joaqu'in Moraga","doi":"10.1307/mmj/20205985","DOIUrl":null,"url":null,"abstract":"We prove that for each positive integer $n$ there exists a positive number $\\epsilon_n$ so that $n$-dimensional toric quotient singularities satisfy the ACC for mld's on the interval $(0,\\epsilon_n)$. In the course of the proof, we will show a geometric Jordan property for finite automorphism groups of affine toric varieties.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":"82 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Small Quotient Minimal Log Discrepancies\",\"authors\":\"Joaqu'in Moraga\",\"doi\":\"10.1307/mmj/20205985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that for each positive integer $n$ there exists a positive number $\\\\epsilon_n$ so that $n$-dimensional toric quotient singularities satisfy the ACC for mld's on the interval $(0,\\\\epsilon_n)$. In the course of the proof, we will show a geometric Jordan property for finite automorphism groups of affine toric varieties.\",\"PeriodicalId\":49820,\"journal\":{\"name\":\"Michigan Mathematical Journal\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Michigan Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20205985\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20205985","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We prove that for each positive integer $n$ there exists a positive number $\epsilon_n$ so that $n$-dimensional toric quotient singularities satisfy the ACC for mld's on the interval $(0,\epsilon_n)$. In the course of the proof, we will show a geometric Jordan property for finite automorphism groups of affine toric varieties.
期刊介绍:
The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.