小商最小对数差异

IF 0.8 3区 数学 Q2 MATHEMATICS
Joaqu'in Moraga
{"title":"小商最小对数差异","authors":"Joaqu'in Moraga","doi":"10.1307/mmj/20205985","DOIUrl":null,"url":null,"abstract":"We prove that for each positive integer $n$ there exists a positive number $\\epsilon_n$ so that $n$-dimensional toric quotient singularities satisfy the ACC for mld's on the interval $(0,\\epsilon_n)$. In the course of the proof, we will show a geometric Jordan property for finite automorphism groups of affine toric varieties.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":"82 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Small Quotient Minimal Log Discrepancies\",\"authors\":\"Joaqu'in Moraga\",\"doi\":\"10.1307/mmj/20205985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that for each positive integer $n$ there exists a positive number $\\\\epsilon_n$ so that $n$-dimensional toric quotient singularities satisfy the ACC for mld's on the interval $(0,\\\\epsilon_n)$. In the course of the proof, we will show a geometric Jordan property for finite automorphism groups of affine toric varieties.\",\"PeriodicalId\":49820,\"journal\":{\"name\":\"Michigan Mathematical Journal\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Michigan Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20205985\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20205985","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

我们证明了对于每一个正整数$n$存在一个正数$\epsilon_n$,使得$n维环商奇点在区间$(0,\epsilon_n)$上满足mld的ACC。在证明的过程中,我们将给出仿射托复形的有限自同构群的一个几何约当性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Small Quotient Minimal Log Discrepancies
We prove that for each positive integer $n$ there exists a positive number $\epsilon_n$ so that $n$-dimensional toric quotient singularities satisfy the ACC for mld's on the interval $(0,\epsilon_n)$. In the course of the proof, we will show a geometric Jordan property for finite automorphism groups of affine toric varieties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
50
审稿时长
>12 weeks
期刊介绍: The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信