{"title":"小商最小对数差异","authors":"Joaqu'in Moraga","doi":"10.1307/mmj/20205985","DOIUrl":null,"url":null,"abstract":"We prove that for each positive integer $n$ there exists a positive number $\\epsilon_n$ so that $n$-dimensional toric quotient singularities satisfy the ACC for mld's on the interval $(0,\\epsilon_n)$. In the course of the proof, we will show a geometric Jordan property for finite automorphism groups of affine toric varieties.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Small Quotient Minimal Log Discrepancies\",\"authors\":\"Joaqu'in Moraga\",\"doi\":\"10.1307/mmj/20205985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that for each positive integer $n$ there exists a positive number $\\\\epsilon_n$ so that $n$-dimensional toric quotient singularities satisfy the ACC for mld's on the interval $(0,\\\\epsilon_n)$. In the course of the proof, we will show a geometric Jordan property for finite automorphism groups of affine toric varieties.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20205985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20205985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We prove that for each positive integer $n$ there exists a positive number $\epsilon_n$ so that $n$-dimensional toric quotient singularities satisfy the ACC for mld's on the interval $(0,\epsilon_n)$. In the course of the proof, we will show a geometric Jordan property for finite automorphism groups of affine toric varieties.