用一种新的紧高斯Q近似估计符号误差概率

Q4 Engineering
Tanmay Mukherjee, Gangadhar Nayak, Dilip Senapati
{"title":"用一种新的紧高斯Q近似估计符号误差概率","authors":"Tanmay Mukherjee, Gangadhar Nayak, Dilip Senapati","doi":"10.1504/IJSCC.2021.10035687","DOIUrl":null,"url":null,"abstract":"In wireless communication systems, various performance metrics requires an evaluation of the Gaussian Q function. However, it is challenging to obtain a closed approximation to the Gaussian Q function in vicinity of small arguments. In this context, this paper portrays a tight approximation to the Gaussian Q function using the Gauss-Legendre numerical integration technique. This can be effectively used towards the computation of symbol error probability (SEP) integrals of different modulation techniques over fading channels. The framework provides an excellent agreement in contrast to the existing methods for SEP computation in Nakagami-m fading channels for all possible values of fading parameter. The model operates well for both higher and lower input arguments of the signal to noise ratios (SNRs). Furthermore, for performance evaluation in Nakagami-m fading channel, this approximation is used to derive the analytical solution for the SEP integrals in general rectangular and non-rectangular quadrature amplitude modulation (QAM).","PeriodicalId":38610,"journal":{"name":"International Journal of Systems, Control and Communications","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Evaluation of symbol error probability using a new tight Gaussian Q approximation\",\"authors\":\"Tanmay Mukherjee, Gangadhar Nayak, Dilip Senapati\",\"doi\":\"10.1504/IJSCC.2021.10035687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In wireless communication systems, various performance metrics requires an evaluation of the Gaussian Q function. However, it is challenging to obtain a closed approximation to the Gaussian Q function in vicinity of small arguments. In this context, this paper portrays a tight approximation to the Gaussian Q function using the Gauss-Legendre numerical integration technique. This can be effectively used towards the computation of symbol error probability (SEP) integrals of different modulation techniques over fading channels. The framework provides an excellent agreement in contrast to the existing methods for SEP computation in Nakagami-m fading channels for all possible values of fading parameter. The model operates well for both higher and lower input arguments of the signal to noise ratios (SNRs). Furthermore, for performance evaluation in Nakagami-m fading channel, this approximation is used to derive the analytical solution for the SEP integrals in general rectangular and non-rectangular quadrature amplitude modulation (QAM).\",\"PeriodicalId\":38610,\"journal\":{\"name\":\"International Journal of Systems, Control and Communications\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Systems, Control and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJSCC.2021.10035687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Systems, Control and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSCC.2021.10035687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 6

摘要

在无线通信系统中,各种性能指标需要对高斯Q函数进行评估。然而,在小参数附近获得高斯Q函数的封闭近似值是具有挑战性的。在这种情况下,本文描述了使用高斯-勒让德数值积分技术对高斯Q函数的严密逼近。这可以有效地用于在衰落信道上计算不同调制技术的符号误差概率(SEP)积分。对于所有可能的衰落参数值,该框架与现有的Nakagami-m衰落信道的SEP计算方法相比,具有很好的一致性。该模型在较高和较低的信噪比输入参数下都能很好地工作。此外,为了评估在Nakagami-m衰落信道中的性能,利用该近似导出了一般矩形和非矩形正交调幅(QAM)中SEP积分的解析解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of symbol error probability using a new tight Gaussian Q approximation
In wireless communication systems, various performance metrics requires an evaluation of the Gaussian Q function. However, it is challenging to obtain a closed approximation to the Gaussian Q function in vicinity of small arguments. In this context, this paper portrays a tight approximation to the Gaussian Q function using the Gauss-Legendre numerical integration technique. This can be effectively used towards the computation of symbol error probability (SEP) integrals of different modulation techniques over fading channels. The framework provides an excellent agreement in contrast to the existing methods for SEP computation in Nakagami-m fading channels for all possible values of fading parameter. The model operates well for both higher and lower input arguments of the signal to noise ratios (SNRs). Furthermore, for performance evaluation in Nakagami-m fading channel, this approximation is used to derive the analytical solution for the SEP integrals in general rectangular and non-rectangular quadrature amplitude modulation (QAM).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Systems, Control and Communications
International Journal of Systems, Control and Communications Engineering-Control and Systems Engineering
CiteScore
1.50
自引率
0.00%
发文量
26
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信