直接照明的神经屏幕空间渲染

C. Suppan, Andrew Chalmers, Junhong Zhao, A. Doronin, Taehyun Rhee
{"title":"直接照明的神经屏幕空间渲染","authors":"C. Suppan, Andrew Chalmers, Junhong Zhao, A. Doronin, Taehyun Rhee","doi":"10.2312/pg.20211385","DOIUrl":null,"url":null,"abstract":"Neural rendering is a class of methods that use deep learning to produce novel images of scenes from more limited information than traditional rendering methods. This is useful for information scarce applications like mixed reality or semantic photo synthesis but comes at the cost of control over the final appearance. We introduce the Neural Direct-illumination Renderer (NDR), a neural screen space renderer capable of rendering direct-illumination images of any geometry, with opaque materials, under distant illuminant. The NDR uses screen space buffers describing material, geometry, and illumination as inputs to provide direct control over the output. We introduce the use of intrinsic image decomposition to allow a Convolutional Neural Network (CNN) to learn a mapping from a large number of pixel buffers to rendered images. The NDR predicts shading maps, which are subsequently combined with albedo maps to create a rendered image. We show that the NDR produces plausible images that can be edited by modifying the input maps and marginally outperforms the state of the art while also providing more functionality. CCS Concepts • Computing methodologies → Rendering; Neural networks; Supervised learning by regression;","PeriodicalId":88304,"journal":{"name":"Proceedings. Pacific Conference on Computer Graphics and Applications","volume":"22 1","pages":"37-42"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Neural Screen Space Rendering of Direct Illumination\",\"authors\":\"C. Suppan, Andrew Chalmers, Junhong Zhao, A. Doronin, Taehyun Rhee\",\"doi\":\"10.2312/pg.20211385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural rendering is a class of methods that use deep learning to produce novel images of scenes from more limited information than traditional rendering methods. This is useful for information scarce applications like mixed reality or semantic photo synthesis but comes at the cost of control over the final appearance. We introduce the Neural Direct-illumination Renderer (NDR), a neural screen space renderer capable of rendering direct-illumination images of any geometry, with opaque materials, under distant illuminant. The NDR uses screen space buffers describing material, geometry, and illumination as inputs to provide direct control over the output. We introduce the use of intrinsic image decomposition to allow a Convolutional Neural Network (CNN) to learn a mapping from a large number of pixel buffers to rendered images. The NDR predicts shading maps, which are subsequently combined with albedo maps to create a rendered image. We show that the NDR produces plausible images that can be edited by modifying the input maps and marginally outperforms the state of the art while also providing more functionality. CCS Concepts • Computing methodologies → Rendering; Neural networks; Supervised learning by regression;\",\"PeriodicalId\":88304,\"journal\":{\"name\":\"Proceedings. Pacific Conference on Computer Graphics and Applications\",\"volume\":\"22 1\",\"pages\":\"37-42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Pacific Conference on Computer Graphics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/pg.20211385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Pacific Conference on Computer Graphics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/pg.20211385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

神经渲染是一类使用深度学习的方法,它比传统的渲染方法从更有限的信息中产生新的场景图像。这对于混合现实或语义合成等信息稀缺的应用程序很有用,但代价是对最终外观的控制。我们介绍了神经直接照明渲染器(NDR),这是一种神经屏幕空间渲染器,能够在远处光源下渲染任何几何形状的不透明材料的直接照明图像。NDR使用描述材料、几何形状和照明的屏幕空间缓冲作为输入,以提供对输出的直接控制。我们介绍了使用内在图像分解来允许卷积神经网络(CNN)学习从大量像素缓冲区到渲染图像的映射。NDR预测阴影地图,随后将其与反照率地图相结合,以创建渲染图像。我们展示了NDR生成可信的图像,可以通过修改输入地图进行编辑,并且在提供更多功能的同时略微优于最先进的状态。•计算方法→渲染;神经网络;回归监督学习;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Screen Space Rendering of Direct Illumination
Neural rendering is a class of methods that use deep learning to produce novel images of scenes from more limited information than traditional rendering methods. This is useful for information scarce applications like mixed reality or semantic photo synthesis but comes at the cost of control over the final appearance. We introduce the Neural Direct-illumination Renderer (NDR), a neural screen space renderer capable of rendering direct-illumination images of any geometry, with opaque materials, under distant illuminant. The NDR uses screen space buffers describing material, geometry, and illumination as inputs to provide direct control over the output. We introduce the use of intrinsic image decomposition to allow a Convolutional Neural Network (CNN) to learn a mapping from a large number of pixel buffers to rendered images. The NDR predicts shading maps, which are subsequently combined with albedo maps to create a rendered image. We show that the NDR produces plausible images that can be edited by modifying the input maps and marginally outperforms the state of the art while also providing more functionality. CCS Concepts • Computing methodologies → Rendering; Neural networks; Supervised learning by regression;
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信