栅格到矢量:重访平面图转换

Chen Liu, Jiajun Wu, Pushmeet Kohli, Yasutaka Furukawa
{"title":"栅格到矢量:重访平面图转换","authors":"Chen Liu, Jiajun Wu, Pushmeet Kohli, Yasutaka Furukawa","doi":"10.1109/ICCV.2017.241","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of converting a rasterized floorplan image into a vector-graphics representation. Unlike existing approaches that rely on a sequence of lowlevel image processing heuristics, we adopt a learning-based approach. A neural architecture first transforms a rasterized image to a set of junctions that represent low-level geometric and semantic information (e.g., wall corners or door end-points). Integer programming is then formulated to aggregate junctions into a set of simple primitives (e.g., wall lines, door lines, or icon boxes) to produce a vectorized floorplan, while ensuring a topologically and geometrically consistent result. Our algorithm significantly outperforms existing methods and achieves around 90% precision and recall, getting to the range of production-ready performance. The vector representation allows 3D model popup for better indoor scene visualization, direct model manipulation for architectural remodeling, and further computational applications such as data analysis. Our system is efficient: we have converted hundred thousand production-level floorplan images into the vector representation and generated 3D popup models.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"1 1","pages":"2214-2222"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"142","resultStr":"{\"title\":\"Raster-to-Vector: Revisiting Floorplan Transformation\",\"authors\":\"Chen Liu, Jiajun Wu, Pushmeet Kohli, Yasutaka Furukawa\",\"doi\":\"10.1109/ICCV.2017.241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of converting a rasterized floorplan image into a vector-graphics representation. Unlike existing approaches that rely on a sequence of lowlevel image processing heuristics, we adopt a learning-based approach. A neural architecture first transforms a rasterized image to a set of junctions that represent low-level geometric and semantic information (e.g., wall corners or door end-points). Integer programming is then formulated to aggregate junctions into a set of simple primitives (e.g., wall lines, door lines, or icon boxes) to produce a vectorized floorplan, while ensuring a topologically and geometrically consistent result. Our algorithm significantly outperforms existing methods and achieves around 90% precision and recall, getting to the range of production-ready performance. The vector representation allows 3D model popup for better indoor scene visualization, direct model manipulation for architectural remodeling, and further computational applications such as data analysis. Our system is efficient: we have converted hundred thousand production-level floorplan images into the vector representation and generated 3D popup models.\",\"PeriodicalId\":6559,\"journal\":{\"name\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"1 1\",\"pages\":\"2214-2222\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"142\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2017.241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 142

摘要

本文解决了将栅格化的平面图图像转换为矢量图形表示的问题。与现有的依赖于一系列低级图像处理启发式的方法不同,我们采用了基于学习的方法。神经结构首先将栅格化图像转换为一组表示低级几何和语义信息的连接(例如,墙角或门的端点)。然后制定整数规划,将连接点聚合成一组简单的原语(例如,墙线,门线或图标框),以产生矢量化的平面图,同时确保拓扑和几何上的一致结果。我们的算法明显优于现有的方法,达到了90%左右的精度和召回率,达到了生产就绪的性能范围。矢量表示允许3D模型弹出以实现更好的室内场景可视化,直接对建筑重塑进行模型操作,以及进一步的计算应用,如数据分析。我们的系统是高效的:我们已经将十万张生产级平面图转换为矢量表示,并生成3D弹出模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Raster-to-Vector: Revisiting Floorplan Transformation
This paper addresses the problem of converting a rasterized floorplan image into a vector-graphics representation. Unlike existing approaches that rely on a sequence of lowlevel image processing heuristics, we adopt a learning-based approach. A neural architecture first transforms a rasterized image to a set of junctions that represent low-level geometric and semantic information (e.g., wall corners or door end-points). Integer programming is then formulated to aggregate junctions into a set of simple primitives (e.g., wall lines, door lines, or icon boxes) to produce a vectorized floorplan, while ensuring a topologically and geometrically consistent result. Our algorithm significantly outperforms existing methods and achieves around 90% precision and recall, getting to the range of production-ready performance. The vector representation allows 3D model popup for better indoor scene visualization, direct model manipulation for architectural remodeling, and further computational applications such as data analysis. Our system is efficient: we have converted hundred thousand production-level floorplan images into the vector representation and generated 3D popup models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信