一种精确量子隐子群算法及其在可解群中的应用

Muhammad Imran, G. Ivanyos
{"title":"一种精确量子隐子群算法及其在可解群中的应用","authors":"Muhammad Imran, G. Ivanyos","doi":"10.26421/qic22.9-10-4","DOIUrl":null,"url":null,"abstract":"We present a polynomial time exact quantum algorithm for the hidden subgroup problem in $\\Z_{m^k}^n$. The algorithm uses the quantum Fourier transform modulo $m$ and does not require factorization of $m$. For smooth $m$, i.e., when the prime factors of $m$ are of size $(\\log m)^{O(1)}$, the quantum Fourier transform can be exactly computed using the method discovered independently by Cleve and Coppersmith, while for general $m$, the algorithm of Mosca and Zalka is available. Even for $m=3$ and $k=1$ our result appears to be new. We also present applications to compute the structure of abelian and solvable groups whose order has the same (but possibly unknown) prime factors as $m$. The applications for solvable groups also rely on an exact version of a technique proposed by Watrous for computing the uniform superposition of elements of subgroups.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"194 1","pages":"770-789"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An exact quantum hidden subgroup algorithm and applications to solvable groups\",\"authors\":\"Muhammad Imran, G. Ivanyos\",\"doi\":\"10.26421/qic22.9-10-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a polynomial time exact quantum algorithm for the hidden subgroup problem in $\\\\Z_{m^k}^n$. The algorithm uses the quantum Fourier transform modulo $m$ and does not require factorization of $m$. For smooth $m$, i.e., when the prime factors of $m$ are of size $(\\\\log m)^{O(1)}$, the quantum Fourier transform can be exactly computed using the method discovered independently by Cleve and Coppersmith, while for general $m$, the algorithm of Mosca and Zalka is available. Even for $m=3$ and $k=1$ our result appears to be new. We also present applications to compute the structure of abelian and solvable groups whose order has the same (but possibly unknown) prime factors as $m$. The applications for solvable groups also rely on an exact version of a technique proposed by Watrous for computing the uniform superposition of elements of subgroups.\",\"PeriodicalId\":20904,\"journal\":{\"name\":\"Quantum Inf. Comput.\",\"volume\":\"194 1\",\"pages\":\"770-789\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26421/qic22.9-10-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/qic22.9-10-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

给出了$\Z_{m^k}^n$中隐子群问题的多项式时间精确量子算法。该算法采用量子傅里叶变换模m,不需要对m进行因式分解。对于光滑$m$,即当$m$的素数因子的大小为$(\log m)^{O(1)}$时,可以使用Cleve和Coppersmith独立发现的方法精确计算量子傅里叶变换,而对于一般$m$,可以使用Mosca和Zalka的算法。即使对于$m=3$和$k=1$,我们的结果似乎是新的。我们也给出了计算次序与$m$具有相同(但可能未知)素数因子的阿贝尔群和可解群的结构的应用。可解群的应用也依赖于Watrous提出的计算子群元素均匀叠加的技术的精确版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An exact quantum hidden subgroup algorithm and applications to solvable groups
We present a polynomial time exact quantum algorithm for the hidden subgroup problem in $\Z_{m^k}^n$. The algorithm uses the quantum Fourier transform modulo $m$ and does not require factorization of $m$. For smooth $m$, i.e., when the prime factors of $m$ are of size $(\log m)^{O(1)}$, the quantum Fourier transform can be exactly computed using the method discovered independently by Cleve and Coppersmith, while for general $m$, the algorithm of Mosca and Zalka is available. Even for $m=3$ and $k=1$ our result appears to be new. We also present applications to compute the structure of abelian and solvable groups whose order has the same (but possibly unknown) prime factors as $m$. The applications for solvable groups also rely on an exact version of a technique proposed by Watrous for computing the uniform superposition of elements of subgroups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信