聚合物基钻井液的流变行为:温度效应的实验研究

Q3 Chemical Engineering
B. Safi, D. Aboutaleb, Soumya Haider
{"title":"聚合物基钻井液的流变行为:温度效应的实验研究","authors":"B. Safi, D. Aboutaleb, Soumya Haider","doi":"10.59441/ijame-2023-0009","DOIUrl":null,"url":null,"abstract":"Drilling fluids most commonly used are generally based on polymers. Polymers such as methylcellulose carboxylate (CMC), polyanionic cellulose (PAC) and xanthan (Xn) have a very important role in the success of drilling operations. Indeed, they are also used to improve certain properties, in particular rheological. However, these polymers can lose their characteristics under the influence of increasing temperature at the bottom of oil wells, thus affecting the ability of the mud to perform its useful role in the drilling operation, namely to raise the cuttings from the bottom of the well to the surface. The present work aims to study the effect of temperature on the main rheological properties (shear stress and plastic viscosity) as well as on the rheological behavior of water-based drilling muds (WBM). WBM_CMC and WBM_PAC (at Xn content fixed) were selected to evaluate the temperature effect (20°C; 40°C; 60°C and 80°C) on the rheological parameters and the rheological behavior. The results revealed that the shear stress and the plastic viscosity of the studied muds were considerably affected by an increase in temperature. A significant decrease in these drilling mud parameters as a function of temperature up to 80°C. A reduction of 58.8% in shear stress and 78.5% in plastic viscosity was observed. The results show that regardless of the test temperature, the shear thinning behavior of the WBM_CMC and WBM_PAC drilling muds is the same as the Herschel-Bulkley model.","PeriodicalId":37871,"journal":{"name":"International Journal of Applied Mechanics and Engineering","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rheological behavior of polymer-based drilling fluids: experimental study of temperature effects\",\"authors\":\"B. Safi, D. Aboutaleb, Soumya Haider\",\"doi\":\"10.59441/ijame-2023-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drilling fluids most commonly used are generally based on polymers. Polymers such as methylcellulose carboxylate (CMC), polyanionic cellulose (PAC) and xanthan (Xn) have a very important role in the success of drilling operations. Indeed, they are also used to improve certain properties, in particular rheological. However, these polymers can lose their characteristics under the influence of increasing temperature at the bottom of oil wells, thus affecting the ability of the mud to perform its useful role in the drilling operation, namely to raise the cuttings from the bottom of the well to the surface. The present work aims to study the effect of temperature on the main rheological properties (shear stress and plastic viscosity) as well as on the rheological behavior of water-based drilling muds (WBM). WBM_CMC and WBM_PAC (at Xn content fixed) were selected to evaluate the temperature effect (20°C; 40°C; 60°C and 80°C) on the rheological parameters and the rheological behavior. The results revealed that the shear stress and the plastic viscosity of the studied muds were considerably affected by an increase in temperature. A significant decrease in these drilling mud parameters as a function of temperature up to 80°C. A reduction of 58.8% in shear stress and 78.5% in plastic viscosity was observed. The results show that regardless of the test temperature, the shear thinning behavior of the WBM_CMC and WBM_PAC drilling muds is the same as the Herschel-Bulkley model.\",\"PeriodicalId\":37871,\"journal\":{\"name\":\"International Journal of Applied Mechanics and Engineering\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mechanics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59441/ijame-2023-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mechanics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59441/ijame-2023-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

最常用的钻井液通常是聚合物。羧酸甲基纤维素(CMC)、聚阴离子纤维素(PAC)和黄原胶(Xn)等聚合物对钻井作业的成功起着非常重要的作用。事实上,它们也被用来改善某些性能,特别是流变性。然而,这些聚合物在井底温度升高的影响下会失去其特性,从而影响泥浆在钻井作业中发挥有用作用的能力,即将岩屑从井底提升到地面。本研究旨在研究温度对水基钻井液(WBM)的主要流变性能(剪切应力和塑性粘度)以及流变性能的影响。选择WBM_CMC和WBM_PAC (Xn含量固定)评价温度效应(20℃;40°C;60℃和80℃)对流变参数和流变行为的影响。结果表明,温度的升高对泥浆的剪切应力和塑性粘度有较大的影响。当温度高达80°C时,这些钻井液参数显著降低。剪切应力降低58.8%,塑性粘度降低78.5%。结果表明:无论试验温度如何,WBM_CMC和WBM_PAC钻井液的剪切减薄行为与Herschel-Bulkley模型一致;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rheological behavior of polymer-based drilling fluids: experimental study of temperature effects
Drilling fluids most commonly used are generally based on polymers. Polymers such as methylcellulose carboxylate (CMC), polyanionic cellulose (PAC) and xanthan (Xn) have a very important role in the success of drilling operations. Indeed, they are also used to improve certain properties, in particular rheological. However, these polymers can lose their characteristics under the influence of increasing temperature at the bottom of oil wells, thus affecting the ability of the mud to perform its useful role in the drilling operation, namely to raise the cuttings from the bottom of the well to the surface. The present work aims to study the effect of temperature on the main rheological properties (shear stress and plastic viscosity) as well as on the rheological behavior of water-based drilling muds (WBM). WBM_CMC and WBM_PAC (at Xn content fixed) were selected to evaluate the temperature effect (20°C; 40°C; 60°C and 80°C) on the rheological parameters and the rheological behavior. The results revealed that the shear stress and the plastic viscosity of the studied muds were considerably affected by an increase in temperature. A significant decrease in these drilling mud parameters as a function of temperature up to 80°C. A reduction of 58.8% in shear stress and 78.5% in plastic viscosity was observed. The results show that regardless of the test temperature, the shear thinning behavior of the WBM_CMC and WBM_PAC drilling muds is the same as the Herschel-Bulkley model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Applied Mechanics and Engineering
International Journal of Applied Mechanics and Engineering Engineering-Civil and Structural Engineering
CiteScore
1.50
自引率
0.00%
发文量
45
审稿时长
35 weeks
期刊介绍: INTERNATIONAL JOURNAL OF APPLIED MECHANICS AND ENGINEERING is an archival journal which aims to publish high quality original papers. These should encompass the best fundamental and applied science with an emphasis on their application to the highest engineering practice. The scope includes all aspects of science and engineering which have relevance to: biomechanics, elasticity, plasticity, vibrations, mechanics of structures, mechatronics, plates & shells, magnetohydrodynamics, rheology, thermodynamics, tribology, fluid dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信