HIL环境下的多维平分法:车削稳定性和颤振预测

IF 1.3 Q3 ENGINEERING, MECHANICAL
B. Béri, D. Bachrathy, G. Stépán
{"title":"HIL环境下的多维平分法:车削稳定性和颤振预测","authors":"B. Béri, D. Bachrathy, G. Stépán","doi":"10.3311/ppme.19579","DOIUrl":null,"url":null,"abstract":"In turning operations, the harmful small-amplitude but high-frequency chatter vibrations are identified in hardware-in-the-loop (HIL) experimental environment by means of the application of a multi-dimensional bisection method. The dummy workpiece clamped to the real main spindle is excited by contactless electromagnetic actuators and the response of the workpiece is detected by laser-based sensors. According to the present and the stored previous positions of the rotating workpiece, the desired cutting force characteristic along with the surface regeneration effect can be emulated by means of a high-performance real target computer. While the conventional experimental results in the HIL environment identify the stability limits of the cutting operation accurately only in a high-resolution grid of the technological parameters, the embedded bisection method reduces significantly both the size of the required grid and the time duration of the measurement by path following the boundaries of the linear loss of stability. Based on this technique, the experimental stability boundary of the emulated turning process is presented in a wide range of spindle speeds.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-Dimensional Bisection Method in HIL Environment: Stability and Chatter Prediction in Turning\",\"authors\":\"B. Béri, D. Bachrathy, G. Stépán\",\"doi\":\"10.3311/ppme.19579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In turning operations, the harmful small-amplitude but high-frequency chatter vibrations are identified in hardware-in-the-loop (HIL) experimental environment by means of the application of a multi-dimensional bisection method. The dummy workpiece clamped to the real main spindle is excited by contactless electromagnetic actuators and the response of the workpiece is detected by laser-based sensors. According to the present and the stored previous positions of the rotating workpiece, the desired cutting force characteristic along with the surface regeneration effect can be emulated by means of a high-performance real target computer. While the conventional experimental results in the HIL environment identify the stability limits of the cutting operation accurately only in a high-resolution grid of the technological parameters, the embedded bisection method reduces significantly both the size of the required grid and the time duration of the measurement by path following the boundaries of the linear loss of stability. Based on this technique, the experimental stability boundary of the emulated turning process is presented in a wide range of spindle speeds.\",\"PeriodicalId\":43630,\"journal\":{\"name\":\"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/ppme.19579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppme.19579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

在车削加工实验环境中,应用多维对分法识别了有害的小振幅高频颤振。利用非接触式电磁致动器对夹紧在真实主轴上的假工件进行激励,并利用激光传感器检测工件的响应。根据旋转工件的当前位置和存储的先前位置,利用高性能实靶计算机可以模拟所需的切削力特性以及表面再生效果。传统的HIL环境实验结果只能在高分辨率的工艺参数网格中准确地确定切割操作的稳定性极限,而嵌入式对分方法通过沿着线性稳定性损失边界的路径显著减少了所需网格的大小和测量的时间持续时间。在此基础上,给出了在大转速范围内模拟车削过程的实验稳定性边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Dimensional Bisection Method in HIL Environment: Stability and Chatter Prediction in Turning
In turning operations, the harmful small-amplitude but high-frequency chatter vibrations are identified in hardware-in-the-loop (HIL) experimental environment by means of the application of a multi-dimensional bisection method. The dummy workpiece clamped to the real main spindle is excited by contactless electromagnetic actuators and the response of the workpiece is detected by laser-based sensors. According to the present and the stored previous positions of the rotating workpiece, the desired cutting force characteristic along with the surface regeneration effect can be emulated by means of a high-performance real target computer. While the conventional experimental results in the HIL environment identify the stability limits of the cutting operation accurately only in a high-resolution grid of the technological parameters, the embedded bisection method reduces significantly both the size of the required grid and the time duration of the measurement by path following the boundaries of the linear loss of stability. Based on this technique, the experimental stability boundary of the emulated turning process is presented in a wide range of spindle speeds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
7.70%
发文量
33
审稿时长
20 weeks
期刊介绍: Periodica Polytechnica is a publisher of the Budapest University of Technology and Economics. It publishes seven international journals (Architecture, Chemical Engineering, Civil Engineering, Electrical Engineering, Mechanical Engineering, Social and Management Sciences, Transportation Engineering). The journals have free electronic versions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信