{"title":"用于高速、可扩展光学神经网络的孤子晶体Kerr微梳","authors":"Xingyuan Xu, M. Tan, D. Moss","doi":"10.23919/MWP48676.2020.9314409","DOIUrl":null,"url":null,"abstract":"Optical artificial neural networks (ONNs) have significant potential for ultra-high computing speed and energy efficiency. We report a new approach to ONNs based on integrated Kerr micro-combs that is programmable, highly scalable and capable of reaching ultra-high speeds, demonstrating the building block of the ONN, a single neuron perceptron, by mapping synapses onto 49 wavelengths to achieve a single-unit throughput of 11.9 Giga-OPS at 8 bits per OP, or 95.2 Gbps. We test the perceptron on handwritten-digit recognition and cancer-cell detection, achieving over 90% and 85% accuracy, respectively. By scaling the perceptron to a deep learning network using off the shelf telecom technology we can achieve high throughput operation for matrix multiplication for real-time massive data processing.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soliton crystal Kerr microcombs for high-speed, scalable optical neural networks at 10 GigaOPs/s\",\"authors\":\"Xingyuan Xu, M. Tan, D. Moss\",\"doi\":\"10.23919/MWP48676.2020.9314409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical artificial neural networks (ONNs) have significant potential for ultra-high computing speed and energy efficiency. We report a new approach to ONNs based on integrated Kerr micro-combs that is programmable, highly scalable and capable of reaching ultra-high speeds, demonstrating the building block of the ONN, a single neuron perceptron, by mapping synapses onto 49 wavelengths to achieve a single-unit throughput of 11.9 Giga-OPS at 8 bits per OP, or 95.2 Gbps. We test the perceptron on handwritten-digit recognition and cancer-cell detection, achieving over 90% and 85% accuracy, respectively. By scaling the perceptron to a deep learning network using off the shelf telecom technology we can achieve high throughput operation for matrix multiplication for real-time massive data processing.\",\"PeriodicalId\":8423,\"journal\":{\"name\":\"arXiv: Applied Physics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MWP48676.2020.9314409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MWP48676.2020.9314409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Soliton crystal Kerr microcombs for high-speed, scalable optical neural networks at 10 GigaOPs/s
Optical artificial neural networks (ONNs) have significant potential for ultra-high computing speed and energy efficiency. We report a new approach to ONNs based on integrated Kerr micro-combs that is programmable, highly scalable and capable of reaching ultra-high speeds, demonstrating the building block of the ONN, a single neuron perceptron, by mapping synapses onto 49 wavelengths to achieve a single-unit throughput of 11.9 Giga-OPS at 8 bits per OP, or 95.2 Gbps. We test the perceptron on handwritten-digit recognition and cancer-cell detection, achieving over 90% and 85% accuracy, respectively. By scaling the perceptron to a deep learning network using off the shelf telecom technology we can achieve high throughput operation for matrix multiplication for real-time massive data processing.