一种新的标记增强LDA聚类模型

IF 0.8 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yi Zhao, Yu Qiao, K. He
{"title":"一种新的标记增强LDA聚类模型","authors":"Yi Zhao, Yu Qiao, K. He","doi":"10.4018/IJWSR.2019070104","DOIUrl":null,"url":null,"abstract":"Clustering has become an increasingly important task in the analysis of large documents. Clustering aims to organize these documents, and facilitate better search and knowledge extraction. Most existing clustering methods that use user-generated tags only consider their positive influence for improving automatic clustering performance. The authors argue that not all user-generated tags can provide useful information for clustering. In this article, the authors propose a new solution for clustering, named HRT-LDA (High Representation Tags Latent Dirichlet Allocation), which considers the effects of different tags on clustering performance. For this, the authors perform a tag filtering strategy and a tag appending strategy based on transfer learning, Word2vec, TF-IDF and semantic computing. Extensive experiments on real-world datasets demonstrate that HRT-LDA outperforms the state-of-the-art tagging augmented LDA methods for clustering.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"35 1","pages":"59-77"},"PeriodicalIF":0.8000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Novel Tagging Augmented LDA Model for Clustering\",\"authors\":\"Yi Zhao, Yu Qiao, K. He\",\"doi\":\"10.4018/IJWSR.2019070104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering has become an increasingly important task in the analysis of large documents. Clustering aims to organize these documents, and facilitate better search and knowledge extraction. Most existing clustering methods that use user-generated tags only consider their positive influence for improving automatic clustering performance. The authors argue that not all user-generated tags can provide useful information for clustering. In this article, the authors propose a new solution for clustering, named HRT-LDA (High Representation Tags Latent Dirichlet Allocation), which considers the effects of different tags on clustering performance. For this, the authors perform a tag filtering strategy and a tag appending strategy based on transfer learning, Word2vec, TF-IDF and semantic computing. Extensive experiments on real-world datasets demonstrate that HRT-LDA outperforms the state-of-the-art tagging augmented LDA methods for clustering.\",\"PeriodicalId\":54936,\"journal\":{\"name\":\"International Journal of Web Services Research\",\"volume\":\"35 1\",\"pages\":\"59-77\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Web Services Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/IJWSR.2019070104\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/IJWSR.2019070104","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 6

摘要

聚类已成为大型文档分析中越来越重要的任务。聚类的目的是组织这些文档,促进更好的搜索和知识提取。大多数现有的使用用户生成标签的聚类方法只考虑它们对提高自动聚类性能的积极影响。作者认为,并非所有用户生成的标签都能为聚类提供有用的信息。在本文中,作者提出了一种新的聚类解决方案,称为HRT-LDA (High Representation Tags Latent Dirichlet Allocation),它考虑了不同标签对聚类性能的影响。为此,作者执行了一种基于迁移学习、Word2vec、TF-IDF和语义计算的标签过滤策略和标签追加策略。在真实数据集上的大量实验表明,HRT-LDA在聚类方面优于最先进的标记增强LDA方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Tagging Augmented LDA Model for Clustering
Clustering has become an increasingly important task in the analysis of large documents. Clustering aims to organize these documents, and facilitate better search and knowledge extraction. Most existing clustering methods that use user-generated tags only consider their positive influence for improving automatic clustering performance. The authors argue that not all user-generated tags can provide useful information for clustering. In this article, the authors propose a new solution for clustering, named HRT-LDA (High Representation Tags Latent Dirichlet Allocation), which considers the effects of different tags on clustering performance. For this, the authors perform a tag filtering strategy and a tag appending strategy based on transfer learning, Word2vec, TF-IDF and semantic computing. Extensive experiments on real-world datasets demonstrate that HRT-LDA outperforms the state-of-the-art tagging augmented LDA methods for clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Web Services Research
International Journal of Web Services Research 工程技术-计算机:软件工程
CiteScore
2.40
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信