基于生成对抗网络的巡逻机器人异常发现

W. Lawson, Esube Bekele, Keith Sullivan
{"title":"基于生成对抗网络的巡逻机器人异常发现","authors":"W. Lawson, Esube Bekele, Keith Sullivan","doi":"10.1109/CVPRW.2017.68","DOIUrl":null,"url":null,"abstract":"We present an anomaly detection system based on an autonomous robot performing a patrol task. Using a generative adversarial network (GAN), we compare the robot's current view with a learned model of normality. Our preliminary experimental results show that the approach is well suited for anomaly detection, providing efficient results with a low false positive rate.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"1 1","pages":"484-485"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Finding Anomalies with Generative Adversarial Networks for a Patrolbot\",\"authors\":\"W. Lawson, Esube Bekele, Keith Sullivan\",\"doi\":\"10.1109/CVPRW.2017.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an anomaly detection system based on an autonomous robot performing a patrol task. Using a generative adversarial network (GAN), we compare the robot's current view with a learned model of normality. Our preliminary experimental results show that the approach is well suited for anomaly detection, providing efficient results with a low false positive rate.\",\"PeriodicalId\":6668,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"1 1\",\"pages\":\"484-485\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2017.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

我们提出了一种基于自主机器人执行巡逻任务的异常检测系统。使用生成对抗网络(GAN),我们将机器人的当前视图与学习到的正态性模型进行比较。我们的初步实验结果表明,该方法非常适合于异常检测,提供了低误报率的高效结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding Anomalies with Generative Adversarial Networks for a Patrolbot
We present an anomaly detection system based on an autonomous robot performing a patrol task. Using a generative adversarial network (GAN), we compare the robot's current view with a learned model of normality. Our preliminary experimental results show that the approach is well suited for anomaly detection, providing efficient results with a low false positive rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信