用于超临界CO2布雷顿循环的印刷电路换热器热工性能的数值研究

Lei Chai, Savvas A Tassou
{"title":"用于超临界CO2布雷顿循环的印刷电路换热器热工性能的数值研究","authors":"Lei Chai,&nbsp;Savvas A Tassou","doi":"10.1016/j.egypro.2019.02.066","DOIUrl":null,"url":null,"abstract":"<div><p>The printed circuit heat exchanger is currently the preferred type of recuperative heat exchanger for the supercritical CO<sub>2</sub> Brayton cycle due to its highly compact construction, high heat transfer coefficients and its ability to withstand high pressures and temperatures. This paper employs a three-dimensional numerical model to investigate the thermohydraulic performance of supercritical CO<sub>2</sub> flow in a printed circuit heat exchanger. This numerical model considers entrance effects, conjugate heat transfer, real gas thermophysical properties and buoyancy effects. The inlet temperature and pressure are 100 °C/150 bar on the cold side and 400 °C/75 bar on the hot side while the mass flux is varied from 254.6 to 1273.2 kg/(m<sup>2</sup>·s). The overall performance of the heat exchanger and comparisons of local heat transfer and friction pressure drop with predictions from the empirical correlations are presented and discussed. Overall, this paper provides useful information that can be employed in the design of recuperators for supercritical CO<sub>2</sub> Brayton cycle applications.</p></div>","PeriodicalId":11517,"journal":{"name":"Energy Procedia","volume":"161 ","pages":"Pages 480-488"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.egypro.2019.02.066","citationCount":"17","resultStr":"{\"title\":\"Numerical study of the thermohydraulic performance of printed circuit heat exchangers for supercritical CO2 Brayton cycle applications\",\"authors\":\"Lei Chai,&nbsp;Savvas A Tassou\",\"doi\":\"10.1016/j.egypro.2019.02.066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The printed circuit heat exchanger is currently the preferred type of recuperative heat exchanger for the supercritical CO<sub>2</sub> Brayton cycle due to its highly compact construction, high heat transfer coefficients and its ability to withstand high pressures and temperatures. This paper employs a three-dimensional numerical model to investigate the thermohydraulic performance of supercritical CO<sub>2</sub> flow in a printed circuit heat exchanger. This numerical model considers entrance effects, conjugate heat transfer, real gas thermophysical properties and buoyancy effects. The inlet temperature and pressure are 100 °C/150 bar on the cold side and 400 °C/75 bar on the hot side while the mass flux is varied from 254.6 to 1273.2 kg/(m<sup>2</sup>·s). The overall performance of the heat exchanger and comparisons of local heat transfer and friction pressure drop with predictions from the empirical correlations are presented and discussed. Overall, this paper provides useful information that can be employed in the design of recuperators for supercritical CO<sub>2</sub> Brayton cycle applications.</p></div>\",\"PeriodicalId\":11517,\"journal\":{\"name\":\"Energy Procedia\",\"volume\":\"161 \",\"pages\":\"Pages 480-488\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.egypro.2019.02.066\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Procedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1876610219311452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876610219311452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

印刷电路热交换器由于其高度紧凑的结构,高传热系数和承受高压和高温的能力,目前是超临界CO2布雷顿循环的首选热回收式热交换器。本文采用三维数值模型研究了印刷电路换热器中超临界CO2流动的热工性能。该数值模型考虑了入口效应、共轭传热、真实气体热物性和浮力效应。冷侧进口温度和压力分别为100°C/150 bar和400°C/75 bar,质量通量为254.6 ~ 1273.2 kg/(m2·s)。介绍并讨论了换热器的整体性能,以及局部换热和摩擦压降与经验关联预测的比较。总的来说,本文提供了有用的信息,可用于超临界CO2布雷顿循环应用的回热器的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical study of the thermohydraulic performance of printed circuit heat exchangers for supercritical CO2 Brayton cycle applications

The printed circuit heat exchanger is currently the preferred type of recuperative heat exchanger for the supercritical CO2 Brayton cycle due to its highly compact construction, high heat transfer coefficients and its ability to withstand high pressures and temperatures. This paper employs a three-dimensional numerical model to investigate the thermohydraulic performance of supercritical CO2 flow in a printed circuit heat exchanger. This numerical model considers entrance effects, conjugate heat transfer, real gas thermophysical properties and buoyancy effects. The inlet temperature and pressure are 100 °C/150 bar on the cold side and 400 °C/75 bar on the hot side while the mass flux is varied from 254.6 to 1273.2 kg/(m2·s). The overall performance of the heat exchanger and comparisons of local heat transfer and friction pressure drop with predictions from the empirical correlations are presented and discussed. Overall, this paper provides useful information that can be employed in the design of recuperators for supercritical CO2 Brayton cycle applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信