度量空间中的可数收缩映射:不变集与测度

M. F. Barrozo, U. Molter
{"title":"度量空间中的可数收缩映射:不变集与测度","authors":"M. F. Barrozo, U. Molter","doi":"10.2478/s11533-013-0371-0","DOIUrl":null,"url":null,"abstract":"We consider a complete metric space (X, d) and a countable number of contraction mappings on X, F = {Fi: i ∈ ℕ}. We show the existence of a smallest invariant set (with respect to inclusion) for F. If the maps Fi are of the form Fi(x) = rix + bi on X = ℝd, we prove a converse of the classic result on contraction mappings, more precisely, there exists a unique bounded invariant set if and only if r = supiri is strictly smaller than 1.Further, if ρ = {ρk}k∈ℕ is a probability sequence, we show that if there exists an invariant measure for the system (F, ρ), then its support must be precisely this smallest invariant set. If in addition there exists any bounded invariant set, this invariant measure is unique, even though there may be more than one invariant set.","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"109 1","pages":"593-602"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Countable contraction mappings in metric spaces: invariant sets and measure\",\"authors\":\"M. F. Barrozo, U. Molter\",\"doi\":\"10.2478/s11533-013-0371-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a complete metric space (X, d) and a countable number of contraction mappings on X, F = {Fi: i ∈ ℕ}. We show the existence of a smallest invariant set (with respect to inclusion) for F. If the maps Fi are of the form Fi(x) = rix + bi on X = ℝd, we prove a converse of the classic result on contraction mappings, more precisely, there exists a unique bounded invariant set if and only if r = supiri is strictly smaller than 1.Further, if ρ = {ρk}k∈ℕ is a probability sequence, we show that if there exists an invariant measure for the system (F, ρ), then its support must be precisely this smallest invariant set. If in addition there exists any bounded invariant set, this invariant measure is unique, even though there may be more than one invariant set.\",\"PeriodicalId\":50988,\"journal\":{\"name\":\"Central European Journal of Mathematics\",\"volume\":\"109 1\",\"pages\":\"593-602\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11533-013-0371-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-013-0371-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们考虑一个完备度量空间(X, d)和X上的一个可数的收缩映射,F = {Fi: i∈_1}。我们证明了f的最小不变量集(关于包含)的存在性。如果映射Fi在x =∈d上具有Fi(x) = rix + bi的形式,我们证明了关于收缩映射经典结果的一个逆命题,更确切地说,当且仅当r = supiri严格小于1时,存在一个唯一的有界不变量集。更进一步,如果ρ = {ρk}k∈n是一个概率序列,我们证明了如果系统(F, ρ)存在一个不变测度,那么它的支持点必须精确地是这个最小不变集。如果另外存在任何有界不变集,则该不变测度是唯一的,即使可能存在多个不变集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Countable contraction mappings in metric spaces: invariant sets and measure
We consider a complete metric space (X, d) and a countable number of contraction mappings on X, F = {Fi: i ∈ ℕ}. We show the existence of a smallest invariant set (with respect to inclusion) for F. If the maps Fi are of the form Fi(x) = rix + bi on X = ℝd, we prove a converse of the classic result on contraction mappings, more precisely, there exists a unique bounded invariant set if and only if r = supiri is strictly smaller than 1.Further, if ρ = {ρk}k∈ℕ is a probability sequence, we show that if there exists an invariant measure for the system (F, ρ), then its support must be precisely this smallest invariant set. If in addition there exists any bounded invariant set, this invariant measure is unique, even though there may be more than one invariant set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信