Jianjun Yu, Ruiqi Li, Daoxiong Gong, Yixin Liu, Peng Liu
{"title":"基于自适应步态切换算法的双足机器人步态跟踪控制","authors":"Jianjun Yu, Ruiqi Li, Daoxiong Gong, Yixin Liu, Peng Liu","doi":"10.1109/CYBER55403.2022.9907560","DOIUrl":null,"url":null,"abstract":"In order to make the walking gait of biped robot more human like, this paper takes the human walking data as the expected gait of robot, and uses the periodic characteristics of gait, proposes a gait tracking control strategy of Biped Robot Based on adaptive gait switching algorithm. Firstly, this paper establishes the complete dynamic models of left leg support phase (LSP) and right leg support phase (RSP) based on Lagrange method, then designs the corresponding LQR gait tracking control strategy, and uses the adaptive weighted particle swarm algorithm (A WPSO) to obtain the optimal controller parameters. Finally, the threshold range of plantar contact force in two periods are estimated based on the adaptive mechanism, and the occurrence of gait switching is detected according to the defined decision rules, thus trigger the control strategy in the next stage to realize the walking tracking control of biped robot. The experimental results show that only two LQR controllers to realize the accurate tracking of the desired gait of the biped robot, and the maximum gait speed reaches two steps/s, which is close to the human gait speed. Compared with other methods, the gait is more human like.","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"42 4 1","pages":"105-110"},"PeriodicalIF":1.5000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gait tracking control of biped robot based on adaptive gait switching algorithm\",\"authors\":\"Jianjun Yu, Ruiqi Li, Daoxiong Gong, Yixin Liu, Peng Liu\",\"doi\":\"10.1109/CYBER55403.2022.9907560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to make the walking gait of biped robot more human like, this paper takes the human walking data as the expected gait of robot, and uses the periodic characteristics of gait, proposes a gait tracking control strategy of Biped Robot Based on adaptive gait switching algorithm. Firstly, this paper establishes the complete dynamic models of left leg support phase (LSP) and right leg support phase (RSP) based on Lagrange method, then designs the corresponding LQR gait tracking control strategy, and uses the adaptive weighted particle swarm algorithm (A WPSO) to obtain the optimal controller parameters. Finally, the threshold range of plantar contact force in two periods are estimated based on the adaptive mechanism, and the occurrence of gait switching is detected according to the defined decision rules, thus trigger the control strategy in the next stage to realize the walking tracking control of biped robot. The experimental results show that only two LQR controllers to realize the accurate tracking of the desired gait of the biped robot, and the maximum gait speed reaches two steps/s, which is close to the human gait speed. Compared with other methods, the gait is more human like.\",\"PeriodicalId\":34110,\"journal\":{\"name\":\"IET Cybersystems and Robotics\",\"volume\":\"42 4 1\",\"pages\":\"105-110\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Cybersystems and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBER55403.2022.9907560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBER55403.2022.9907560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Gait tracking control of biped robot based on adaptive gait switching algorithm
In order to make the walking gait of biped robot more human like, this paper takes the human walking data as the expected gait of robot, and uses the periodic characteristics of gait, proposes a gait tracking control strategy of Biped Robot Based on adaptive gait switching algorithm. Firstly, this paper establishes the complete dynamic models of left leg support phase (LSP) and right leg support phase (RSP) based on Lagrange method, then designs the corresponding LQR gait tracking control strategy, and uses the adaptive weighted particle swarm algorithm (A WPSO) to obtain the optimal controller parameters. Finally, the threshold range of plantar contact force in two periods are estimated based on the adaptive mechanism, and the occurrence of gait switching is detected according to the defined decision rules, thus trigger the control strategy in the next stage to realize the walking tracking control of biped robot. The experimental results show that only two LQR controllers to realize the accurate tracking of the desired gait of the biped robot, and the maximum gait speed reaches two steps/s, which is close to the human gait speed. Compared with other methods, the gait is more human like.