{"title":"在线性碰撞器上生成完整的SM","authors":"M. Berggren","doi":"10.22323/1.390.0903","DOIUrl":null,"url":null,"abstract":"Future linear e+e- colliders aim for extremely high precision measurements. To achieve this, not only excellent detectors and well controlled machine conditions are needed, but also the best possible estimate of backgrounds. To avoid that lacking channels and too low statistics becomes a major source of systematic errors in data-MC comparisons, all SM channels with the potential to yield at least a few events under the full lifetime of the projects need to be generated, with statistics largely exceeding that of the real data. Also machine conditions need to be accurately taken into account. This includes beam-polarisation, interactions due to the photons inevitably present in the highly focused beams, and coherent interactions of whole bunches. This endeavour has already been partly achieved in preparing design documents for both the ILC and CLIC: Comprehensive samples of fully simulated and reconstructed events are available for use. In this contribution, we present how the generation of physics events at linear colliders is categorised and organised, and the tools used. Also covered is how different aspects of machine conditions, different sources of spurious interactions (such as beam-induced backgrounds) are treated and the tools involved for these aspects.","PeriodicalId":20428,"journal":{"name":"Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Generating the full SM at linear colliders\",\"authors\":\"M. Berggren\",\"doi\":\"10.22323/1.390.0903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future linear e+e- colliders aim for extremely high precision measurements. To achieve this, not only excellent detectors and well controlled machine conditions are needed, but also the best possible estimate of backgrounds. To avoid that lacking channels and too low statistics becomes a major source of systematic errors in data-MC comparisons, all SM channels with the potential to yield at least a few events under the full lifetime of the projects need to be generated, with statistics largely exceeding that of the real data. Also machine conditions need to be accurately taken into account. This includes beam-polarisation, interactions due to the photons inevitably present in the highly focused beams, and coherent interactions of whole bunches. This endeavour has already been partly achieved in preparing design documents for both the ILC and CLIC: Comprehensive samples of fully simulated and reconstructed events are available for use. In this contribution, we present how the generation of physics events at linear colliders is categorised and organised, and the tools used. Also covered is how different aspects of machine conditions, different sources of spurious interactions (such as beam-induced backgrounds) are treated and the tools involved for these aspects.\",\"PeriodicalId\":20428,\"journal\":{\"name\":\"Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.390.0903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.390.0903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Future linear e+e- colliders aim for extremely high precision measurements. To achieve this, not only excellent detectors and well controlled machine conditions are needed, but also the best possible estimate of backgrounds. To avoid that lacking channels and too low statistics becomes a major source of systematic errors in data-MC comparisons, all SM channels with the potential to yield at least a few events under the full lifetime of the projects need to be generated, with statistics largely exceeding that of the real data. Also machine conditions need to be accurately taken into account. This includes beam-polarisation, interactions due to the photons inevitably present in the highly focused beams, and coherent interactions of whole bunches. This endeavour has already been partly achieved in preparing design documents for both the ILC and CLIC: Comprehensive samples of fully simulated and reconstructed events are available for use. In this contribution, we present how the generation of physics events at linear colliders is categorised and organised, and the tools used. Also covered is how different aspects of machine conditions, different sources of spurious interactions (such as beam-induced backgrounds) are treated and the tools involved for these aspects.