Sherif Elsoudy, Sayed Y. Akl, A. Abdel‐Rehim, S. Salem
{"title":"ZnO纳米添加剂在SAE 20W-50发动机润滑油中的摩擦学行为研究","authors":"Sherif Elsoudy, Sayed Y. Akl, A. Abdel‐Rehim, S. Salem","doi":"10.1115/imece2021-66843","DOIUrl":null,"url":null,"abstract":"\n In internal combustion engines, significant power losses are directly related to the mechanical friction of engine parts. Therefore, controlling tribological performance for engine lubricants has a major role in limiting those losses. In this study, the tribological properties of traditional engine oil with nano ZnO and oleic acid (OA) as a surfactant have been analyzed. Three different concentrations of 0.2, 0.5 and 1 wt.% were investigated using a pin-on-disc tribometer, according to ASTM G-99 with boundary/mixed lubrication regimes. The generated friction and wear characteristics revealed a remarkable reduction in friction coefficient with a range of 8–10%. Analysis of SEM and EDX was conducted on the worn surfaces. Additionally, the colloidal stability of nano dispersion was performed through sedimentation, FTIR, and Zeta analyses.","PeriodicalId":23837,"journal":{"name":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Tribological Behaviour of ZnO Nano Additives Suspended in SAE 20W-50 Engine Oil\",\"authors\":\"Sherif Elsoudy, Sayed Y. Akl, A. Abdel‐Rehim, S. Salem\",\"doi\":\"10.1115/imece2021-66843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In internal combustion engines, significant power losses are directly related to the mechanical friction of engine parts. Therefore, controlling tribological performance for engine lubricants has a major role in limiting those losses. In this study, the tribological properties of traditional engine oil with nano ZnO and oleic acid (OA) as a surfactant have been analyzed. Three different concentrations of 0.2, 0.5 and 1 wt.% were investigated using a pin-on-disc tribometer, according to ASTM G-99 with boundary/mixed lubrication regimes. The generated friction and wear characteristics revealed a remarkable reduction in friction coefficient with a range of 8–10%. Analysis of SEM and EDX was conducted on the worn surfaces. Additionally, the colloidal stability of nano dispersion was performed through sedimentation, FTIR, and Zeta analyses.\",\"PeriodicalId\":23837,\"journal\":{\"name\":\"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2021-66843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-66843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study on Tribological Behaviour of ZnO Nano Additives Suspended in SAE 20W-50 Engine Oil
In internal combustion engines, significant power losses are directly related to the mechanical friction of engine parts. Therefore, controlling tribological performance for engine lubricants has a major role in limiting those losses. In this study, the tribological properties of traditional engine oil with nano ZnO and oleic acid (OA) as a surfactant have been analyzed. Three different concentrations of 0.2, 0.5 and 1 wt.% were investigated using a pin-on-disc tribometer, according to ASTM G-99 with boundary/mixed lubrication regimes. The generated friction and wear characteristics revealed a remarkable reduction in friction coefficient with a range of 8–10%. Analysis of SEM and EDX was conducted on the worn surfaces. Additionally, the colloidal stability of nano dispersion was performed through sedimentation, FTIR, and Zeta analyses.