Ankur Choudhary, A. Baghel
求助PDF
{"title":"基于杜鹃搜索优化、经验模态分解和ARIMA模型的软件可靠性预测:CS-EEMD-ARIMA的SRGM","authors":"Ankur Choudhary, A. Baghel","doi":"10.4018/IJOSSP.2016100103","DOIUrl":null,"url":null,"abstract":"Thedemandofhighlyreliableandsuperiorqualityopensourcesoftware’sareincreasing daybyday.Thisdemandforcesoftwaredeveloperstoimprovisethereliabilityoftheir software’s.Authorshaveproposedseveralparametricandnon-parametricsoftware reliabilitymodelsbuttheyhavetheirownlimitations,likeparametricmodelsuffer fromunrealisticmodelassumptions,operatingenvironmentconditiondependencies. Incontrasttoparametric,non-parametricmodelsovercometheseissuesbuttheyare computationallycostlier.So,thescopeofoptimizationordevelopmentofnewreliable model still exists. This paper presents an effective software reliability modeling based on Cuckoo Search optimization, Ensemble Empirical Mode Decomposition andARIMAmodelingoftimeseriestoprovidemoreaccurateprediction.Extensive experimentson5realdatasetsisconductedandresultsarecollected.Theanalysisof resultsindicatesthesuperiorityofproposedtechniqueoverexistingparametricand non-parametricmodelsforopensourcesoftware’sandproprietysoftware’s. KEywORDS ARIMA, Cuckoo Search Optimization, EEMD, Software Reliability Growth Model, Time Series Model","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"52 1","pages":"39-54"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Software Reliability Prediction Using Cuckoo Search Optimization, Empirical Mode Decomposition, and ARIMA Model: CS-EEMD-ARIMA Based SRGM\",\"authors\":\"Ankur Choudhary, A. Baghel\",\"doi\":\"10.4018/IJOSSP.2016100103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thedemandofhighlyreliableandsuperiorqualityopensourcesoftware’sareincreasing daybyday.Thisdemandforcesoftwaredeveloperstoimprovisethereliabilityoftheir software’s.Authorshaveproposedseveralparametricandnon-parametricsoftware reliabilitymodelsbuttheyhavetheirownlimitations,likeparametricmodelsuffer fromunrealisticmodelassumptions,operatingenvironmentconditiondependencies. Incontrasttoparametric,non-parametricmodelsovercometheseissuesbuttheyare computationallycostlier.So,thescopeofoptimizationordevelopmentofnewreliable model still exists. This paper presents an effective software reliability modeling based on Cuckoo Search optimization, Ensemble Empirical Mode Decomposition andARIMAmodelingoftimeseriestoprovidemoreaccurateprediction.Extensive experimentson5realdatasetsisconductedandresultsarecollected.Theanalysisof resultsindicatesthesuperiorityofproposedtechniqueoverexistingparametricand non-parametricmodelsforopensourcesoftware’sandproprietysoftware’s. KEywORDS ARIMA, Cuckoo Search Optimization, EEMD, Software Reliability Growth Model, Time Series Model\",\"PeriodicalId\":53605,\"journal\":{\"name\":\"International Journal of Open Source Software and Processes\",\"volume\":\"52 1\",\"pages\":\"39-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Source Software and Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJOSSP.2016100103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJOSSP.2016100103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2
引用
批量引用
Software Reliability Prediction Using Cuckoo Search Optimization, Empirical Mode Decomposition, and ARIMA Model: CS-EEMD-ARIMA Based SRGM
Thedemandofhighlyreliableandsuperiorqualityopensourcesoftware’sareincreasing daybyday.Thisdemandforcesoftwaredeveloperstoimprovisethereliabilityoftheir software’s.Authorshaveproposedseveralparametricandnon-parametricsoftware reliabilitymodelsbuttheyhavetheirownlimitations,likeparametricmodelsuffer fromunrealisticmodelassumptions,operatingenvironmentconditiondependencies. Incontrasttoparametric,non-parametricmodelsovercometheseissuesbuttheyare computationallycostlier.So,thescopeofoptimizationordevelopmentofnewreliable model still exists. This paper presents an effective software reliability modeling based on Cuckoo Search optimization, Ensemble Empirical Mode Decomposition andARIMAmodelingoftimeseriestoprovidemoreaccurateprediction.Extensive experimentson5realdatasetsisconductedandresultsarecollected.Theanalysisof resultsindicatesthesuperiorityofproposedtechniqueoverexistingparametricand non-parametricmodelsforopensourcesoftware’sandproprietysoftware’s. KEywORDS ARIMA, Cuckoo Search Optimization, EEMD, Software Reliability Growth Model, Time Series Model