基于杜鹃搜索优化、经验模态分解和ARIMA模型的软件可靠性预测:CS-EEMD-ARIMA的SRGM

Q4 Computer Science
Ankur Choudhary, A. Baghel
{"title":"基于杜鹃搜索优化、经验模态分解和ARIMA模型的软件可靠性预测:CS-EEMD-ARIMA的SRGM","authors":"Ankur Choudhary, A. Baghel","doi":"10.4018/IJOSSP.2016100103","DOIUrl":null,"url":null,"abstract":"Thedemandofhighlyreliableandsuperiorqualityopensourcesoftware’sareincreasing daybyday.Thisdemandforcesoftwaredeveloperstoimprovisethereliabilityoftheir software’s.Authorshaveproposedseveralparametricandnon-parametricsoftware reliabilitymodelsbuttheyhavetheirownlimitations,likeparametricmodelsuffer fromunrealisticmodelassumptions,operatingenvironmentconditiondependencies. Incontrasttoparametric,non-parametricmodelsovercometheseissuesbuttheyare computationallycostlier.So,thescopeofoptimizationordevelopmentofnewreliable model still exists. This paper presents an effective software reliability modeling based on Cuckoo Search optimization, Ensemble Empirical Mode Decomposition andARIMAmodelingoftimeseriestoprovidemoreaccurateprediction.Extensive experimentson5realdatasetsisconductedandresultsarecollected.Theanalysisof resultsindicatesthesuperiorityofproposedtechniqueoverexistingparametricand non-parametricmodelsforopensourcesoftware’sandproprietysoftware’s. KEywORDS ARIMA, Cuckoo Search Optimization, EEMD, Software Reliability Growth Model, Time Series Model","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"52 1","pages":"39-54"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Software Reliability Prediction Using Cuckoo Search Optimization, Empirical Mode Decomposition, and ARIMA Model: CS-EEMD-ARIMA Based SRGM\",\"authors\":\"Ankur Choudhary, A. Baghel\",\"doi\":\"10.4018/IJOSSP.2016100103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thedemandofhighlyreliableandsuperiorqualityopensourcesoftware’sareincreasing daybyday.Thisdemandforcesoftwaredeveloperstoimprovisethereliabilityoftheir software’s.Authorshaveproposedseveralparametricandnon-parametricsoftware reliabilitymodelsbuttheyhavetheirownlimitations,likeparametricmodelsuffer fromunrealisticmodelassumptions,operatingenvironmentconditiondependencies. Incontrasttoparametric,non-parametricmodelsovercometheseissuesbuttheyare computationallycostlier.So,thescopeofoptimizationordevelopmentofnewreliable model still exists. This paper presents an effective software reliability modeling based on Cuckoo Search optimization, Ensemble Empirical Mode Decomposition andARIMAmodelingoftimeseriestoprovidemoreaccurateprediction.Extensive experimentson5realdatasetsisconductedandresultsarecollected.Theanalysisof resultsindicatesthesuperiorityofproposedtechniqueoverexistingparametricand non-parametricmodelsforopensourcesoftware’sandproprietysoftware’s. KEywORDS ARIMA, Cuckoo Search Optimization, EEMD, Software Reliability Growth Model, Time Series Model\",\"PeriodicalId\":53605,\"journal\":{\"name\":\"International Journal of Open Source Software and Processes\",\"volume\":\"52 1\",\"pages\":\"39-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Source Software and Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJOSSP.2016100103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJOSSP.2016100103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

摘要

Thedemandofhighlyreliableandsuperiorqualityopensourcesoftware 'sareincreasing daybyday。Thisdemandforcesoftwaredeveloperstoimprovisethereliabilityoftheir软件的。Authorshaveproposedseveralparametricandnon-parametricsoftware reliabilitymodelsbuttheyhavetheirownlimitations,likeparametricmodelsuffer fromunrealisticmodelassumptions,operatingenvironmentconditiondependencies。Incontrasttoparametric,non-parametricmodelsovercometheseissuesbuttheyare computationallycostlier。So,thescopeofoptimizationordevelopmentofnewreliable model仍然存在。这篇论文提出了一种有效的软件可靠性建模方法,该方法基于cuckoosearch优化,ensembleexperiicalmodedecomposition andARIMAmodelingoftimeseriestoprovidemoreaccurateprediction。Extensive experimentson5realdatasetsisconductedandresultsarecollected。Theanalysisof resultsindicatesthesuperiorityofproposedtechniqueoverexistingparametricand non-parametricmodelsforopensourcesoftware 'sandproprietysoftware 's。关键词:ARIMA,布谷鸟搜索优化,EEMD,软件可靠性增长模型,时间序列模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Software Reliability Prediction Using Cuckoo Search Optimization, Empirical Mode Decomposition, and ARIMA Model: CS-EEMD-ARIMA Based SRGM
Thedemandofhighlyreliableandsuperiorqualityopensourcesoftware’sareincreasing daybyday.Thisdemandforcesoftwaredeveloperstoimprovisethereliabilityoftheir software’s.Authorshaveproposedseveralparametricandnon-parametricsoftware reliabilitymodelsbuttheyhavetheirownlimitations,likeparametricmodelsuffer fromunrealisticmodelassumptions,operatingenvironmentconditiondependencies. Incontrasttoparametric,non-parametricmodelsovercometheseissuesbuttheyare computationallycostlier.So,thescopeofoptimizationordevelopmentofnewreliable model still exists. This paper presents an effective software reliability modeling based on Cuckoo Search optimization, Ensemble Empirical Mode Decomposition andARIMAmodelingoftimeseriestoprovidemoreaccurateprediction.Extensive experimentson5realdatasetsisconductedandresultsarecollected.Theanalysisof resultsindicatesthesuperiorityofproposedtechniqueoverexistingparametricand non-parametricmodelsforopensourcesoftware’sandproprietysoftware’s. KEywORDS ARIMA, Cuckoo Search Optimization, EEMD, Software Reliability Growth Model, Time Series Model
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
16
期刊介绍: The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信