用于生物传感的硅纳米线接口电路

K. I. Usman, M. Hamidon, N. Yusof, S. Azhari, I. H. Hasan, K. Nicodemus, Siti Fatimah Abd Rahman
{"title":"用于生物传感的硅纳米线接口电路","authors":"K. I. Usman, M. Hamidon, N. Yusof, S. Azhari, I. H. Hasan, K. Nicodemus, Siti Fatimah Abd Rahman","doi":"10.1109/RSM.2015.7355040","DOIUrl":null,"url":null,"abstract":"Detection and quantification of biological and chemical species are critical to many areas of the life sciences and health care, from disease diagnosis to drug screening. Central to detection is the transduction of the signal associated with the sensing event. Advances in nanotechnology have led to the development of the silicon nanowire which is faster, smaller, greener and cheaper. These nanowires have a very narrow diameter similar to that of the chemical and biological species to be sensed making them perfectly suited for biosensing. The top-down fabricated silicon nanowires is used in this work due to its oxide-coated surface and ease of integration with other microelectronic components. Due to the ultra-small output signal of the nanowire, bulky equipments which are often time consuming and expensive are used for reading the signal. This work attempts to build a circuit that can be interfaced with the nanowire to make the signal readable hence the sensor will become portable thereby increasing its utility to being a point-of-care and field-testing device.","PeriodicalId":6667,"journal":{"name":"2015 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)","volume":"14 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Silicon nanowire interface circuit for biosensing applications\",\"authors\":\"K. I. Usman, M. Hamidon, N. Yusof, S. Azhari, I. H. Hasan, K. Nicodemus, Siti Fatimah Abd Rahman\",\"doi\":\"10.1109/RSM.2015.7355040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection and quantification of biological and chemical species are critical to many areas of the life sciences and health care, from disease diagnosis to drug screening. Central to detection is the transduction of the signal associated with the sensing event. Advances in nanotechnology have led to the development of the silicon nanowire which is faster, smaller, greener and cheaper. These nanowires have a very narrow diameter similar to that of the chemical and biological species to be sensed making them perfectly suited for biosensing. The top-down fabricated silicon nanowires is used in this work due to its oxide-coated surface and ease of integration with other microelectronic components. Due to the ultra-small output signal of the nanowire, bulky equipments which are often time consuming and expensive are used for reading the signal. This work attempts to build a circuit that can be interfaced with the nanowire to make the signal readable hence the sensor will become portable thereby increasing its utility to being a point-of-care and field-testing device.\",\"PeriodicalId\":6667,\"journal\":{\"name\":\"2015 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)\",\"volume\":\"14 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSM.2015.7355040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSM.2015.7355040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

从疾病诊断到药物筛选,生物和化学物种的检测和定量对生命科学和保健的许多领域至关重要。检测的核心是与传感事件相关的信号的转导。纳米技术的进步导致了硅纳米线的发展,它更快、更小、更环保、更便宜。这些纳米线的直径非常窄,类似于被感知的化学和生物物种,使它们非常适合生物传感。由于其氧化涂层表面和易于与其他微电子元件集成,因此在这项工作中使用了自上而下制造的硅纳米线。由于纳米线的输出信号非常小,因此需要使用体积庞大、耗时且价格昂贵的设备来读取信号。这项工作试图建立一个可以与纳米线连接的电路,使信号可读,因此传感器将变得便携,从而增加其作为护理点和现场测试设备的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Silicon nanowire interface circuit for biosensing applications
Detection and quantification of biological and chemical species are critical to many areas of the life sciences and health care, from disease diagnosis to drug screening. Central to detection is the transduction of the signal associated with the sensing event. Advances in nanotechnology have led to the development of the silicon nanowire which is faster, smaller, greener and cheaper. These nanowires have a very narrow diameter similar to that of the chemical and biological species to be sensed making them perfectly suited for biosensing. The top-down fabricated silicon nanowires is used in this work due to its oxide-coated surface and ease of integration with other microelectronic components. Due to the ultra-small output signal of the nanowire, bulky equipments which are often time consuming and expensive are used for reading the signal. This work attempts to build a circuit that can be interfaced with the nanowire to make the signal readable hence the sensor will become portable thereby increasing its utility to being a point-of-care and field-testing device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信