L^1 -超临界Fokker-Planck方程的奇异性:定性分析

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Katharina Hopf
{"title":"L^1 -超临界Fokker-Planck方程的奇异性:定性分析","authors":"Katharina Hopf","doi":"10.4171/aihpc/85","DOIUrl":null,"url":null,"abstract":"A class of nonlinear Fokker-Planck equations with superlinear drift is investigated in the $L^1$-supercritical regime, which exhibits a finite critical mass. The equations have a formal Wasserstein-like gradient-flow structure with a convex mobility and a free energy functional whose minimising measure has a singular component if above the critical mass. Singularities and concentrations also arise in the evolutionary problem and their finite-time appearance constitutes a primary technical difficulty. This paper aims at a global-in-time qualitative analysis with main focus on the isotropic case, where solutions will be shown to converge to the unique minimiser of the free energy as time tends to infinity. A key step in the analysis consists in properly controlling the singularity profiles during the evolution. Our study covers the 3D Kaniadakis--Quarati model for Bose--Einstein particles, and thus provides a first rigorous result on the continuation beyond blow-up and long-time asymptotic behaviour for this model.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Singularities in $L^1$-supercritical Fokker–Planck equations: A qualitative analysis\",\"authors\":\"Katharina Hopf\",\"doi\":\"10.4171/aihpc/85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A class of nonlinear Fokker-Planck equations with superlinear drift is investigated in the $L^1$-supercritical regime, which exhibits a finite critical mass. The equations have a formal Wasserstein-like gradient-flow structure with a convex mobility and a free energy functional whose minimising measure has a singular component if above the critical mass. Singularities and concentrations also arise in the evolutionary problem and their finite-time appearance constitutes a primary technical difficulty. This paper aims at a global-in-time qualitative analysis with main focus on the isotropic case, where solutions will be shown to converge to the unique minimiser of the free energy as time tends to infinity. A key step in the analysis consists in properly controlling the singularity profiles during the evolution. Our study covers the 3D Kaniadakis--Quarati model for Bose--Einstein particles, and thus provides a first rigorous result on the continuation beyond blow-up and long-time asymptotic behaviour for this model.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/aihpc/85\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/aihpc/85","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

研究了一类具有超线性漂移的非线性Fokker-Planck方程在L^1 -超临界区具有有限临界质量。该方程具有正式的类瓦瑟斯坦梯度流结构,具有凸迁移率和自由能泛函,其最小值在临界质量以上具有奇异分量。奇点和集中也出现在进化问题中,它们的有限时间出现构成了一个主要的技术难题。本文的目的是对各向同性的情况进行全局实时定性分析,当时间趋于无穷大时,解收敛于自由能的唯一最小值。分析的关键步骤是在演化过程中适当地控制奇异剖面。我们的研究涵盖了玻色-爱因斯坦粒子的三维Kaniadakis- Quarati模型,从而提供了该模型超越爆炸和长时间渐近行为的连续的第一个严格结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Singularities in $L^1$-supercritical Fokker–Planck equations: A qualitative analysis
A class of nonlinear Fokker-Planck equations with superlinear drift is investigated in the $L^1$-supercritical regime, which exhibits a finite critical mass. The equations have a formal Wasserstein-like gradient-flow structure with a convex mobility and a free energy functional whose minimising measure has a singular component if above the critical mass. Singularities and concentrations also arise in the evolutionary problem and their finite-time appearance constitutes a primary technical difficulty. This paper aims at a global-in-time qualitative analysis with main focus on the isotropic case, where solutions will be shown to converge to the unique minimiser of the free energy as time tends to infinity. A key step in the analysis consists in properly controlling the singularity profiles during the evolution. Our study covers the 3D Kaniadakis--Quarati model for Bose--Einstein particles, and thus provides a first rigorous result on the continuation beyond blow-up and long-time asymptotic behaviour for this model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信