{"title":"L^1 -超临界Fokker-Planck方程的奇异性:定性分析","authors":"Katharina Hopf","doi":"10.4171/aihpc/85","DOIUrl":null,"url":null,"abstract":"A class of nonlinear Fokker-Planck equations with superlinear drift is investigated in the $L^1$-supercritical regime, which exhibits a finite critical mass. The equations have a formal Wasserstein-like gradient-flow structure with a convex mobility and a free energy functional whose minimising measure has a singular component if above the critical mass. Singularities and concentrations also arise in the evolutionary problem and their finite-time appearance constitutes a primary technical difficulty. This paper aims at a global-in-time qualitative analysis with main focus on the isotropic case, where solutions will be shown to converge to the unique minimiser of the free energy as time tends to infinity. A key step in the analysis consists in properly controlling the singularity profiles during the evolution. Our study covers the 3D Kaniadakis--Quarati model for Bose--Einstein particles, and thus provides a first rigorous result on the continuation beyond blow-up and long-time asymptotic behaviour for this model.","PeriodicalId":55514,"journal":{"name":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Singularities in $L^1$-supercritical Fokker–Planck equations: A qualitative analysis\",\"authors\":\"Katharina Hopf\",\"doi\":\"10.4171/aihpc/85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A class of nonlinear Fokker-Planck equations with superlinear drift is investigated in the $L^1$-supercritical regime, which exhibits a finite critical mass. The equations have a formal Wasserstein-like gradient-flow structure with a convex mobility and a free energy functional whose minimising measure has a singular component if above the critical mass. Singularities and concentrations also arise in the evolutionary problem and their finite-time appearance constitutes a primary technical difficulty. This paper aims at a global-in-time qualitative analysis with main focus on the isotropic case, where solutions will be shown to converge to the unique minimiser of the free energy as time tends to infinity. A key step in the analysis consists in properly controlling the singularity profiles during the evolution. Our study covers the 3D Kaniadakis--Quarati model for Bose--Einstein particles, and thus provides a first rigorous result on the continuation beyond blow-up and long-time asymptotic behaviour for this model.\",\"PeriodicalId\":55514,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-Analyse Non Lineaire\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-Analyse Non Lineaire\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/aihpc/85\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/aihpc/85","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Singularities in $L^1$-supercritical Fokker–Planck equations: A qualitative analysis
A class of nonlinear Fokker-Planck equations with superlinear drift is investigated in the $L^1$-supercritical regime, which exhibits a finite critical mass. The equations have a formal Wasserstein-like gradient-flow structure with a convex mobility and a free energy functional whose minimising measure has a singular component if above the critical mass. Singularities and concentrations also arise in the evolutionary problem and their finite-time appearance constitutes a primary technical difficulty. This paper aims at a global-in-time qualitative analysis with main focus on the isotropic case, where solutions will be shown to converge to the unique minimiser of the free energy as time tends to infinity. A key step in the analysis consists in properly controlling the singularity profiles during the evolution. Our study covers the 3D Kaniadakis--Quarati model for Bose--Einstein particles, and thus provides a first rigorous result on the continuation beyond blow-up and long-time asymptotic behaviour for this model.
期刊介绍:
The Nonlinear Analysis section of the Annales de l''Institut Henri Poincaré is an international journal created in 1983 which publishes original and high quality research articles. It concentrates on all domains concerned with nonlinear analysis, specially applicable to PDE, mechanics, physics, economy, without overlooking the numerical aspects.