二自由度动力系统稳定性的评价

IF 2.8 4区 工程技术 Q1 ACOUSTICS
T. Amer, A. Ismail, W. Amer
{"title":"二自由度动力系统稳定性的评价","authors":"T. Amer, A. Ismail, W. Amer","doi":"10.1177/14613484231177654","DOIUrl":null,"url":null,"abstract":"This work studies a two degrees-of-freedom (DOF) dynamical system whose governing system is solved analytically using the multiple scales approach (MSA). The solvability requirements are obtained in light of the elimination of secular terms. All resonance states are classified to understand the equilibrium of the dynamical system. Two of them are examined in parallel to get the associated equations for the system’s modulation. All probable fixed points are identified at the states of stability and instability using the criteria of Routh-Hurwitz (RH). The curves of resonance and the system’s behavior during the motion are plotted and analyzed. The numerical solutions (NS) of the governing system are obtained using the method of Runge-Kutta fourth-order, and they are compared with the analytical solutions (AS). The comparison reveals high consistency between them and proves the accuracy of the MSA. To determine the positive effects of different parameters on the motion, stability zones are studied from the perspective of their graphs. The applications of such works are very important in our daily lives and were the reason for the development of several things, including protection from earthquakes, car shock absorbers, structure vibration, human walking, television towers, high buildings, and antennas.","PeriodicalId":56067,"journal":{"name":"Journal of Low Frequency Noise Vibration and Active Control","volume":"25 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluation of the stability of a two degrees-of-freedom dynamical system\",\"authors\":\"T. Amer, A. Ismail, W. Amer\",\"doi\":\"10.1177/14613484231177654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work studies a two degrees-of-freedom (DOF) dynamical system whose governing system is solved analytically using the multiple scales approach (MSA). The solvability requirements are obtained in light of the elimination of secular terms. All resonance states are classified to understand the equilibrium of the dynamical system. Two of them are examined in parallel to get the associated equations for the system’s modulation. All probable fixed points are identified at the states of stability and instability using the criteria of Routh-Hurwitz (RH). The curves of resonance and the system’s behavior during the motion are plotted and analyzed. The numerical solutions (NS) of the governing system are obtained using the method of Runge-Kutta fourth-order, and they are compared with the analytical solutions (AS). The comparison reveals high consistency between them and proves the accuracy of the MSA. To determine the positive effects of different parameters on the motion, stability zones are studied from the perspective of their graphs. The applications of such works are very important in our daily lives and were the reason for the development of several things, including protection from earthquakes, car shock absorbers, structure vibration, human walking, television towers, high buildings, and antennas.\",\"PeriodicalId\":56067,\"journal\":{\"name\":\"Journal of Low Frequency Noise Vibration and Active Control\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Frequency Noise Vibration and Active Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14613484231177654\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Frequency Noise Vibration and Active Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14613484231177654","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了一个二自由度动力系统,该系统的控制系统采用多尺度方法解析求解。可解性要求是根据消除长期项而得到的。所有的共振状态都被分类,以理解动力系统的平衡。对其中的两种方法进行了并行分析,得到了系统调制的相关方程。利用Routh-Hurwitz (RH)准则在稳定和不稳定状态下识别所有可能的不动点。绘制并分析了系统在运动过程中的谐振曲线和系统行为。采用龙格-库塔四阶方法得到了控制系统的数值解,并与解析解进行了比较。结果表明,两者具有较高的一致性,证明了MSA的准确性。为了确定不同参数对运动的积极影响,从稳定区图的角度研究了稳定区。这些工作的应用在我们的日常生活中非常重要,并且是许多事物发展的原因,包括防震,汽车减震器,结构振动,人类行走,电视塔,高层建筑和天线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of the stability of a two degrees-of-freedom dynamical system
This work studies a two degrees-of-freedom (DOF) dynamical system whose governing system is solved analytically using the multiple scales approach (MSA). The solvability requirements are obtained in light of the elimination of secular terms. All resonance states are classified to understand the equilibrium of the dynamical system. Two of them are examined in parallel to get the associated equations for the system’s modulation. All probable fixed points are identified at the states of stability and instability using the criteria of Routh-Hurwitz (RH). The curves of resonance and the system’s behavior during the motion are plotted and analyzed. The numerical solutions (NS) of the governing system are obtained using the method of Runge-Kutta fourth-order, and they are compared with the analytical solutions (AS). The comparison reveals high consistency between them and proves the accuracy of the MSA. To determine the positive effects of different parameters on the motion, stability zones are studied from the perspective of their graphs. The applications of such works are very important in our daily lives and were the reason for the development of several things, including protection from earthquakes, car shock absorbers, structure vibration, human walking, television towers, high buildings, and antennas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
4.30%
发文量
98
审稿时长
15 weeks
期刊介绍: Journal of Low Frequency Noise, Vibration & Active Control is a peer-reviewed, open access journal, bringing together material which otherwise would be scattered. The journal is the cornerstone of the creation of a unified corpus of knowledge on the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信