分数阶不规则奇异系统的LQ优化问题

IF 1.2 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS
{"title":"分数阶不规则奇异系统的LQ优化问题","authors":"","doi":"10.24425/acs.2020.135850","DOIUrl":null,"url":null,"abstract":"In this paper we discuss the linear quadratic (LQ) optimization problem subject to fractional order irregular singular systems. The aim of this paper is to find the control-state pairs satisfying the dynamic constraint of the form a fractional order irregular singular systems such that the LQ objective functional is minimized. The method of solving is to convert such LQ optimization into the standard fractional LQ optimization problem. Under some particularly conditions we find the solution of the problem under consideration.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"4 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On LQ optimization problem subject to fractional order irregular singular systems\",\"authors\":\"\",\"doi\":\"10.24425/acs.2020.135850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we discuss the linear quadratic (LQ) optimization problem subject to fractional order irregular singular systems. The aim of this paper is to find the control-state pairs satisfying the dynamic constraint of the form a fractional order irregular singular systems such that the LQ objective functional is minimized. The method of solving is to convert such LQ optimization into the standard fractional LQ optimization problem. Under some particularly conditions we find the solution of the problem under consideration.\",\"PeriodicalId\":48654,\"journal\":{\"name\":\"Archives of Control Sciences\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Control Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.24425/acs.2020.135850\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Control Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.24425/acs.2020.135850","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 4

摘要

讨论了分数阶不规则奇异系统的线性二次优化问题。本文的目的是寻找满足分数阶不规则奇异系统动态约束的控制状态对,使LQ目标泛函最小。求解方法是将这种LQ优化问题转化为标准的分数阶LQ优化问题。在某些特殊条件下,我们找到了正在考虑的问题的解决办法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On LQ optimization problem subject to fractional order irregular singular systems
In this paper we discuss the linear quadratic (LQ) optimization problem subject to fractional order irregular singular systems. The aim of this paper is to find the control-state pairs satisfying the dynamic constraint of the form a fractional order irregular singular systems such that the LQ objective functional is minimized. The method of solving is to convert such LQ optimization into the standard fractional LQ optimization problem. Under some particularly conditions we find the solution of the problem under consideration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Control Sciences
Archives of Control Sciences Mathematics-Modeling and Simulation
CiteScore
2.40
自引率
33.30%
发文量
0
审稿时长
14 weeks
期刊介绍: Archives of Control Sciences welcomes for consideration papers on topics of significance in broadly understood control science and related areas, including: basic control theory, optimal control, optimization methods, control of complex systems, mathematical modeling of dynamic and control systems, expert and decision support systems and diverse methods of knowledge modelling and representing uncertainty (by stochastic, set-valued, fuzzy or rough set methods, etc.), robotics and flexible manufacturing systems. Related areas that are covered include information technology, parallel and distributed computations, neural networks and mathematical biomedicine, mathematical economics, applied game theory, financial engineering, business informatics and other similar fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信