双曲型积分-微分方程狄利克雷问题的适定性

IF 0.1
A. Anikushyn, O. Zhyvolovych
{"title":"双曲型积分-微分方程狄利克雷问题的适定性","authors":"A. Anikushyn, O. Zhyvolovych","doi":"10.17721/2706-9699.2022.2.02","DOIUrl":null,"url":null,"abstract":"In the paper we consider a Dirichlet problem for an integro-differential equation with Volterra type integral term. Proving a priori estimates for the differential and integral parts, we provide negative norms’ a priori estimates for the operator of the problem. Based on the latest, we formulate theorems regarding the well-posedness of the formulated boundary value problem.","PeriodicalId":40347,"journal":{"name":"Journal of Numerical and Applied Mathematics","volume":"47 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WELL-POSEDNESS OF A DIRICHLET PROBLEM FOR A HYPERBOLIC TYPE INTEGRO-DIFFERENTIAL EQUATION\",\"authors\":\"A. Anikushyn, O. Zhyvolovych\",\"doi\":\"10.17721/2706-9699.2022.2.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper we consider a Dirichlet problem for an integro-differential equation with Volterra type integral term. Proving a priori estimates for the differential and integral parts, we provide negative norms’ a priori estimates for the operator of the problem. Based on the latest, we formulate theorems regarding the well-posedness of the formulated boundary value problem.\",\"PeriodicalId\":40347,\"journal\":{\"name\":\"Journal of Numerical and Applied Mathematics\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17721/2706-9699.2022.2.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/2706-9699.2022.2.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究一类具有Volterra型积分项的积分微分方程的Dirichlet问题。证明了微分部分和积分部分的先验估计,给出了问题算子的负范数先验估计。在此基础上,我们给出了公式化边值问题的适定性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WELL-POSEDNESS OF A DIRICHLET PROBLEM FOR A HYPERBOLIC TYPE INTEGRO-DIFFERENTIAL EQUATION
In the paper we consider a Dirichlet problem for an integro-differential equation with Volterra type integral term. Proving a priori estimates for the differential and integral parts, we provide negative norms’ a priori estimates for the operator of the problem. Based on the latest, we formulate theorems regarding the well-posedness of the formulated boundary value problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信