硫酸铁-石灰软化混凝剂系统去除水介质中模型芳烃

Surfaces Pub Date : 2022-09-22 DOI:10.3390/surfaces5040030
Deysi J. Venegas-García, L. Wilson
{"title":"硫酸铁-石灰软化混凝剂系统去除水介质中模型芳烃","authors":"Deysi J. Venegas-García, L. Wilson","doi":"10.3390/surfaces5040030","DOIUrl":null,"url":null,"abstract":"The removal of model hydrocarbon oil systems (4-nitrophenol (PNP) and naphthalene) from laboratory water was evaluated using a ferric sulfate and a lime-softening coagulant system. This study addresses the availability of a methodology that documents the removal of BTEX related compounds and optimizes the ferric-based coagulant system in alkaline media. The Box–Behnken design with Response Surface Methodology enabled the optimization of the conditions for the removal (%) of the model compounds for the coagulation process. Three independent variables were considered: coagulant dosage (10–100 mg/L PNP and 30–100 mg/L naphthalene), lime dosage (50–200%), and initial pollutant concentration (1–35 mg/L PNP and 1–25 mg/L naphthalene). The response optimization showed a 28% removal of PNP at optimal conditions: 74.5 mg/L ferric sulfate, 136% lime dosage, and initial PNP concentration of 2 mg/L. The optimal conditions for naphthalene removal were 42 mg/L ferric sulfate, 50% lime dosage, and an initial concentration of naphthalene (16.3 mg/L) to obtain a 90% removal efficiency. The coagulation process was modeled by adsorption isotherms (Langmuir for PNP; Freundlich for Naphthalene). The surface properties of flocs were investigated with pHpzc, solid-state UV absorbance spectra, and optical microscopy to gain insight into the role of adsorption in the ferric coagulation process.","PeriodicalId":22129,"journal":{"name":"Surfaces","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Removal of Model Aromatic Hydrocarbons from Aqueous Media with a Ferric Sulfate–Lime Softening Coagulant System\",\"authors\":\"Deysi J. Venegas-García, L. Wilson\",\"doi\":\"10.3390/surfaces5040030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The removal of model hydrocarbon oil systems (4-nitrophenol (PNP) and naphthalene) from laboratory water was evaluated using a ferric sulfate and a lime-softening coagulant system. This study addresses the availability of a methodology that documents the removal of BTEX related compounds and optimizes the ferric-based coagulant system in alkaline media. The Box–Behnken design with Response Surface Methodology enabled the optimization of the conditions for the removal (%) of the model compounds for the coagulation process. Three independent variables were considered: coagulant dosage (10–100 mg/L PNP and 30–100 mg/L naphthalene), lime dosage (50–200%), and initial pollutant concentration (1–35 mg/L PNP and 1–25 mg/L naphthalene). The response optimization showed a 28% removal of PNP at optimal conditions: 74.5 mg/L ferric sulfate, 136% lime dosage, and initial PNP concentration of 2 mg/L. The optimal conditions for naphthalene removal were 42 mg/L ferric sulfate, 50% lime dosage, and an initial concentration of naphthalene (16.3 mg/L) to obtain a 90% removal efficiency. The coagulation process was modeled by adsorption isotherms (Langmuir for PNP; Freundlich for Naphthalene). The surface properties of flocs were investigated with pHpzc, solid-state UV absorbance spectra, and optical microscopy to gain insight into the role of adsorption in the ferric coagulation process.\",\"PeriodicalId\":22129,\"journal\":{\"name\":\"Surfaces\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/surfaces5040030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/surfaces5040030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用硫酸铁和石灰软化混凝剂体系对实验室水中的模型烃类油体系(4-硝基酚(PNP)和萘)的去除效果进行了评价。本研究解决了一种方法的可用性,该方法记录了BTEX相关化合物的去除,并优化了碱性介质中铁基混凝剂系统。采用响应面法的Box-Behnken设计优化了混凝过程中模型化合物去除率(%)的条件。考虑三个自变量:混凝剂用量(10-100 mg/L PNP和30-100 mg/L萘)、石灰用量(50-200%)和初始污染物浓度(1-35 mg/L PNP和1-25 mg/L萘)。在硫酸铁74.5 mg/L、石灰投加量136%、初始PNP浓度为2 mg/L的条件下,PNP去除率为28%。对萘的最佳去除率为:硫酸铁42 mg/L、石灰投加量50%、萘初始浓度16.3 mg/L,去除率为90%。用吸附等温线模拟混凝过程(Langmuir for PNP;Freundlich表示萘)。利用pHpzc、固态紫外吸收光谱和光学显微镜对絮凝体的表面性质进行了研究,以了解吸附在铁絮凝过程中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Removal of Model Aromatic Hydrocarbons from Aqueous Media with a Ferric Sulfate–Lime Softening Coagulant System
The removal of model hydrocarbon oil systems (4-nitrophenol (PNP) and naphthalene) from laboratory water was evaluated using a ferric sulfate and a lime-softening coagulant system. This study addresses the availability of a methodology that documents the removal of BTEX related compounds and optimizes the ferric-based coagulant system in alkaline media. The Box–Behnken design with Response Surface Methodology enabled the optimization of the conditions for the removal (%) of the model compounds for the coagulation process. Three independent variables were considered: coagulant dosage (10–100 mg/L PNP and 30–100 mg/L naphthalene), lime dosage (50–200%), and initial pollutant concentration (1–35 mg/L PNP and 1–25 mg/L naphthalene). The response optimization showed a 28% removal of PNP at optimal conditions: 74.5 mg/L ferric sulfate, 136% lime dosage, and initial PNP concentration of 2 mg/L. The optimal conditions for naphthalene removal were 42 mg/L ferric sulfate, 50% lime dosage, and an initial concentration of naphthalene (16.3 mg/L) to obtain a 90% removal efficiency. The coagulation process was modeled by adsorption isotherms (Langmuir for PNP; Freundlich for Naphthalene). The surface properties of flocs were investigated with pHpzc, solid-state UV absorbance spectra, and optical microscopy to gain insight into the role of adsorption in the ferric coagulation process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信