Yuxuan Xia, P. Wang, K. Berntorp, H. Mansour, P. Boufounos, P. Orlik
{"title":"基于部分视图测量的分层截断模型的扩展目标跟踪","authors":"Yuxuan Xia, P. Wang, K. Berntorp, H. Mansour, P. Boufounos, P. Orlik","doi":"10.1109/SAM48682.2020.9104388","DOIUrl":null,"url":null,"abstract":"This paper introduces the hierarchical truncated Gaussian model in representing automotive radar measurements for extended object tracking. The model aims at a flexible spatial distribution with adaptive truncation bounds to account for partial-view measurements caused by self-occlusion. Built on a random matrix approach, we propose a new state update step together with an adaptively update of the truncation bounds. This is achieved by introducing spatial-domain pseudo measurements and by aggregating partial-view measurements over consecutive time-domain scans. The effectiveness of the proposed algorithm is verified on a synthetic dataset and an independent dataset generated using the MathWorks Automated Driving toolbox.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"36 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Extended Object Tracking Using Hierarchical Truncation Model with Partial-View Measurements\",\"authors\":\"Yuxuan Xia, P. Wang, K. Berntorp, H. Mansour, P. Boufounos, P. Orlik\",\"doi\":\"10.1109/SAM48682.2020.9104388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the hierarchical truncated Gaussian model in representing automotive radar measurements for extended object tracking. The model aims at a flexible spatial distribution with adaptive truncation bounds to account for partial-view measurements caused by self-occlusion. Built on a random matrix approach, we propose a new state update step together with an adaptively update of the truncation bounds. This is achieved by introducing spatial-domain pseudo measurements and by aggregating partial-view measurements over consecutive time-domain scans. The effectiveness of the proposed algorithm is verified on a synthetic dataset and an independent dataset generated using the MathWorks Automated Driving toolbox.\",\"PeriodicalId\":6753,\"journal\":{\"name\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"36 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM48682.2020.9104388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extended Object Tracking Using Hierarchical Truncation Model with Partial-View Measurements
This paper introduces the hierarchical truncated Gaussian model in representing automotive radar measurements for extended object tracking. The model aims at a flexible spatial distribution with adaptive truncation bounds to account for partial-view measurements caused by self-occlusion. Built on a random matrix approach, we propose a new state update step together with an adaptively update of the truncation bounds. This is achieved by introducing spatial-domain pseudo measurements and by aggregating partial-view measurements over consecutive time-domain scans. The effectiveness of the proposed algorithm is verified on a synthetic dataset and an independent dataset generated using the MathWorks Automated Driving toolbox.