基于部分视图测量的分层截断模型的扩展目标跟踪

Yuxuan Xia, P. Wang, K. Berntorp, H. Mansour, P. Boufounos, P. Orlik
{"title":"基于部分视图测量的分层截断模型的扩展目标跟踪","authors":"Yuxuan Xia, P. Wang, K. Berntorp, H. Mansour, P. Boufounos, P. Orlik","doi":"10.1109/SAM48682.2020.9104388","DOIUrl":null,"url":null,"abstract":"This paper introduces the hierarchical truncated Gaussian model in representing automotive radar measurements for extended object tracking. The model aims at a flexible spatial distribution with adaptive truncation bounds to account for partial-view measurements caused by self-occlusion. Built on a random matrix approach, we propose a new state update step together with an adaptively update of the truncation bounds. This is achieved by introducing spatial-domain pseudo measurements and by aggregating partial-view measurements over consecutive time-domain scans. The effectiveness of the proposed algorithm is verified on a synthetic dataset and an independent dataset generated using the MathWorks Automated Driving toolbox.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"36 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Extended Object Tracking Using Hierarchical Truncation Model with Partial-View Measurements\",\"authors\":\"Yuxuan Xia, P. Wang, K. Berntorp, H. Mansour, P. Boufounos, P. Orlik\",\"doi\":\"10.1109/SAM48682.2020.9104388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the hierarchical truncated Gaussian model in representing automotive radar measurements for extended object tracking. The model aims at a flexible spatial distribution with adaptive truncation bounds to account for partial-view measurements caused by self-occlusion. Built on a random matrix approach, we propose a new state update step together with an adaptively update of the truncation bounds. This is achieved by introducing spatial-domain pseudo measurements and by aggregating partial-view measurements over consecutive time-domain scans. The effectiveness of the proposed algorithm is verified on a synthetic dataset and an independent dataset generated using the MathWorks Automated Driving toolbox.\",\"PeriodicalId\":6753,\"journal\":{\"name\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"36 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM48682.2020.9104388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了用于扩展目标跟踪的汽车雷达测量的分层截断高斯模型。该模型的目标是一个灵活的空间分布,具有自适应截断边界,以考虑自遮挡引起的部分视图测量。在随机矩阵方法的基础上,我们提出了一个新的状态更新步骤以及截断界的自适应更新。这是通过引入空间域伪测量和在连续的时域扫描上聚合部分视图测量来实现的。在合成数据集和使用MathWorks自动驾驶工具箱生成的独立数据集上验证了所提出算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extended Object Tracking Using Hierarchical Truncation Model with Partial-View Measurements
This paper introduces the hierarchical truncated Gaussian model in representing automotive radar measurements for extended object tracking. The model aims at a flexible spatial distribution with adaptive truncation bounds to account for partial-view measurements caused by self-occlusion. Built on a random matrix approach, we propose a new state update step together with an adaptively update of the truncation bounds. This is achieved by introducing spatial-domain pseudo measurements and by aggregating partial-view measurements over consecutive time-domain scans. The effectiveness of the proposed algorithm is verified on a synthetic dataset and an independent dataset generated using the MathWorks Automated Driving toolbox.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信